🇺🇸 United States Episodes

13504 episodes from United States

Tal Zaks - Bridging Science, Medicine, and Returns

My guest today is Tal Zaks. Tal is a physician-scientist turned biotech executive and investor who served as Moderna's Chief Medical Officer during their COVID-19 vaccine development, giving him an extraordinary perspective on one of modern medicine's pivotal moments. His combination of medical expertise, platform innovation experience, and investing acumen allows us to explore the interconnected challenges of turning scientific breakthroughs into viable medicines while generating venture-scale returns. We dive deep into lessons from Moderna's mRNA platform, examine how emerging technologies might reshape drug development, and the fundamental question of what it means to make people healthier. For investors, entrepreneurs, and anyone interested in the future of medicine, this discussion provides a window into both the immense potential and profound challenges of advancing human health. Please enjoy my conversation with Tal Zaks.  For the full show notes, transcript, and links to mentioned content, check out the episode page here. ----- This episode is brought to you by Ramp. Ramp’s mission is to help companies manage their spend in a way that reduces expenses and frees up time for teams to work on more valuable projects. Ramp is the fastest-growing FinTech company in history, and it’s backed by more of my favorite past guests (at least 16 of them!) than probably any other company I’m aware of. Go to Ramp.com/invest to sign up for free and get a $250 welcome bonus. – This episode is brought to you by AlphaSense. AlphaSense has completely transformed the research process with cutting-edge AI technology and a vast collection of top-tier, reliable business content. Imagine completing your research five to ten times faster with search that delivers the most relevant results, helping you make high-conviction decisions with confidence. Invest Like the Best listeners can get a free trial now at Alpha-Sense.com/Invest and experience firsthand how AlphaSense and Tegus help you make smarter decisions faster. –  This episode is brought to you by Ridgeline. Ridgeline has built a complete, real-time, modern operating system for investment managers. It handles trading, portfolio management, compliance, customer reporting, and much more through an all-in-one real-time cloud platform. I think this platform will become the standard for investment managers, and if you run an investing firm, I highly recommend you find time to speak with them. Head to ridgelineapps.com to learn more about the platform. ----- Invest Like the Best is a property of Colossus, LLC. For more episodes of Invest Like the Best, visit joincolossus.com/episodes.  Follow us on Twitter: @patrick_oshag | @JoinColossus Editing and post-production work for this episode was provided by The Podcast Consultant (https://thepodcastconsultant.com). Show Notes: (00:00:00) Welcome to Invest Like the Best (00:08:37) State of Medicine Today (00:09:44) Investment and Innovation in Medicine (00:13:14) Challenges in Biotech Investment (00:17:18) Personalized Cancer Vaccines (00:22:58) Investing in Biotech: Process and Considerations (00:28:38) Multidisciplinary Approach in Pharma (00:41:35) COVID-19 Vaccine Development (00:46:27) Funding and Manufacturing Challenges (00:48:01) Unprecedented Vaccine Safety Measures (00:50:38) Public Perception and Trust Issues (00:53:54) Future of mRNA and Nucleic Acid Medicines (00:58:04) Personalized Medicine and Data Collection (01:04:48) AI's Role in Healthcare (01:08:34) Investment Strategies in Therapeutics (01:14:57) The Human Element in Medical Innovation (01:21:58) The Kindest Thing Anyone Has Ever Done for Tal

Tucker Carlson and Michael Shellenberger Break Down the California Fires

From The Tucker Carlson Show

Michael Shellenberger may be the best reporter in America. Here’s what he’s learned about the fires in Los Angeles — and about UFOs. (00:00) How Many Fires Are There? Where Did They Come From? (03:03) Are Meth Heads Lighting the Fires? (14:56) DEI Fire Departments (38:44) Leftists Blame Climate Change Yet Again (40:47) Gavin Newsom Is Too Busy Hating Trump to Fight the Fires (52:30) The Golden Age of Journalism Paid partnerships with: Eight Sleep: Get $350 off the Pod 4 Ultra at https://EightSleep.com/Tucker Policygenius: Get your free life insurance quotes today at https://Policygenius.com/Tucker  PureTalk: Get 50% off first month at https://PureTalk.com/Tucker Learn more about your ad choices. Visit megaphone.fm/adchoices

S4 EP1: Willem Dafoe on collaborating with Lars Von Trier, being buried alive, and his 'distinctive face’

From The Louis Theroux Podcast

To kick off the new series, Louis is joined in the studio by acting legend Willem Dafoe. Renowned for an astonishing range of acting roles - from Poor Things to Spiderman - Willem discusses his life and career, including collaborating with provocative director Lars von Trier, what it’s like to be buried alive on camera, and how his face has a mind of its own…    Warnings: Strong language, as well as some adult themes.     Links/Attachments:     Platoon (1986)  https://www.youtube.com/watch?v=R8weLPF4qBQ  Antichrist (2009)  https://www.youtube.com/watch?v=LO-TNfPzh_k   Last Temptation of Christ (1988)  https://www.youtube.com/watch?v=aW6jxGaIias  Poor Things (2023)  https://www.youtube.com/watch?v=RlbR5N6veqw  Spiderman (2002)  https://www.youtube.com/watch?v=t06RUxPbp_c  Beetlejuice Beetlejuice (2024)  https://www.youtube.com/watch?v=As-vKW4ZboU&pp=ygUVYmVldGxlanVpY2UgMiB0cmFpbGVy  Nosferatu (2024)  https://www.youtube.com/watch?v=Px6S0RxfAHg  The Loveless (1981)  https://www.youtube.com/watch?v=SJEmcxXR7H0  Wild At Heart (1990)  https://www.youtube.com/watch?v=dQIdBfrF0Ik  Shadow Of The Vampire (2000)  https://www.youtube.com/watch?v=_B15iesNMa8  Body Of Evidence (1993)  https://www.youtube.com/watch?v=51xEHzC-rjQ  The Witch (2015)  https://www.youtube.com/watch?v=iQXmlf3Sefg&t=31s  The Northman (2022)  https://www.youtube.com/watch?v=8mamgc47SOE  Birds Eye Advert - Polar Bear Fish Finger (2010)  https://www.youtube.com/watch?v=lsKWjO213EY  Mercedes Advert (2013)  https://www.youtube.com/watch?v=yfqNfbCQzpo  Jim Beam Whiskey Advert (2011)  https://www.youtube.com/watch?v=wYXFLX2vB-Q     Breaking the Waves (1996)  https://www.youtube.com/watch?v=SHqZh-9AiCs    At Eternity's Gate (2018)  https://www.youtube.com/watch?v=T77PDm3e1iE&pp=ygUaYXQgZXRlcm5pdHkncyBnYXRlIHRyYWlsZXI%3D  Pink Flamingos (1972)   https://www.youtube.com/watch?v=YwGZ6Mv4qko  Learn more about your ad choices. Visit podcastchoices.com/adchoices

Their L.A. Neighborhood Burned. Two Residents Find What’s Left.

From The Journal

The Pacific Palisades neighborhood of Los Angeles has been decimated by some of the worst fires in U.S. history. On Friday, WSJ’s Katherine Sayre accompanied two residents who went back to see what is left of their homes. Further Reading: -The Palisades Residents Who Took Long Journeys to See What’s Left of Their Lives  -Their Wealth Is in Their Homes. Their Homes Are Now Ash.  Further Listening: -The Race to Save an Iconic Train From Falling Into the Ocean  Learn more about your ad choices. Visit megaphone.fm/adchoices

Solar energy is even cheaper than you think | Jenny Chase

From TED Talks Daily

How prevalent is solar power, really? According to researcher Jenny Chase, it's already displacing fossil fuels in key energy markets around the world. She explains the rise of affordable solar power and dives into how her team tracked its rapid installation in unexpected countries, offering a vision of a brighter, more sustainable future.For a chance to give your own TED Talk, fill out the Idea Search Application: ted.com/ideasearch.Interested in learning more about upcoming TED events? Follow these links:TEDNext: ted.com/futureyouTEDSports: ted.com/sportsTEDAI Vienna: ted.com/ai-vienna Hosted on Acast. See acast.com/privacy for more information.

Overcoming Guilt & Building Tenacity in Kids & Adults | Dr. Becky Kennedy

From Huberman Lab

My guest is Becky Kennedy, Ph.D., a clinical psychologist, renowned expert on parent-child relationships and founder of Good Inside, an educational platform for parents and parents-to-be. We discuss how to learn, embody and teach better emotional processing, leading to healthier relationships in parenting, work, romantic partnerships and friendships. Dr. Kennedy shares practical strategies for managing guilt, building frustration tolerance and nurturing emotional intelligence, as well as the impact of technology on emotional processing. This conversation aims to empower listeners to cultivate resilient, loving and supportive connections across all areas of life. Sponsors AG1: https://drinkag1.com/huberman Wealthfront*: https://wealthfront.com/huberman Our Place: https://fromourplace.com/huberman Joovv: https://joovv.com/huberman LMNT: https://drinklmnt.com/huberman Eight Sleep: https://eightsleep.com/huberman *This experience may not be representative of the experience of other clients of Wealthfront, and there is no guarantee that all clients will have similar experiences. Cash Account is offered by Wealthfront Brokerage LLC, Member FINRA/SIPC. The Annual Percentage Yield (“APY”) on cash deposits as of December 27,‬ 2024, is representative, subject to change, and requires no minimum. Funds in the Cash Account are swept to partner banks where they earn the variable‭ APY. Promo terms and FDIC coverage conditions apply. Same-day withdrawal or instant payment transfers may be limited by destination institutions, daily transaction caps, and by participating entities such as Wells Fargo, the RTP® Network, and FedNow® Service. New Cash Account deposits are subject to a 2-4 day holding period before becoming available for transfer. Timestamps 00:00:00 Dr. Becky Kennedy; LA Fires 00:03:13 Emotions, Parents & Kids, Information, Tools: Story; “Right to Notice” 00:11:24 Sponsors: Wealthfront & Our Place 00:14:25 Empathy, Kids & Parents 00:18:33 Sturdiness, Pilot Analogy, Tool: Parental Self-Care 00:26:34 Emotions, Rigidity, Moody vs Steady Kids, Siblings 00:32:51 Emotion Talk, Crying; Eye Rolls, Tools: Not Taking Bait; Discuss Struggle 00:39:26 Parent-Child Power Dynamics, Tools: Requests for Parent; Repair 00:48:50 Sponsors: AG1 & Joovv 00:51:39 Power & Authority, Tools: Learning More; Parent Primary Job & Safety 00:59:16 Statements of Stance, Actions vs Emotions; Values, Behaviors & Rigidity 01:05:59 Guilt, Women; Tools: “Not Guilt”, Tennis Court Analogy & Empathy 01:15:46 Sponsors: LMNT & Eight Sleep 01:18:41 Guilt, Relationships, Tool: Naming Values Directly 01:26:06 Locate Others & Values; Sturdy Leadership; Parenting & Shame 01:31:36 Egg Analogy & Boundaries; Tools: Frame Separation; Pilot & Turbulence; Safety 01:39:30 Projection, “Porous”; Tools: Gazing In vs Out, Most Generous Interpretation 01:45:51 Tools: “Soften”; Do Nothing & Difficult Situations; Proving Parenting 01:51:05 Gazing In vs Out, Scales; Self-Needs & Inconvenience 02:00:05 Stress & Story, Nervous; Relationships vs Efficiency 02:08:46 Technology, Relationships, Frustration Tolerance, Gratification 02:15:18 Slowing Down, Phones, Frustration, Capability 02:21:42 Immediate Gratification, Effort & Struggle, Dopamine 02:29:25 Confidence, Board Games, Parental Modeling 02:34:04 Ultra-Performers & Pressure, Emptiness 02:41:29 Trying Things, Unlived Dreams, Frustration Tolerance, Tool: Learning Space 02:51:08 Learning & Building Frustration Tolerance, Tantrums; Feelings & Story 03:03:00 Tool: Using Story; Shame, Punishment 03:12:55 Leadership & Storytelling, Tools: Asking Questions; Songs & Learning 03:23:21 Miss Edson, Momentum, Tool: Small First Steps 03:30:15 Tools: Parents & Starting Point 03:36:29 Good Inside, Zero-Cost Support, Spotify & Apple Follow & Reviews, YouTube Feedback, Sponsors, Social Media, Neural Network Newsletter Learn more about your ad choices. Visit megaphone.fm/adchoices

"Peter Berg"

From SmartLess

Put down the sugar– we have the wonderful Peter Berg. A rash, a seething ball of confusion and rage, and a love for the game. Happy New Year, Listener. It’s an all-new SmartLess.

#889 - Tony Robbins - How To Build An Extraordinary Life

From Modern Wisdom

Tony Robbins is a life and business coach, entrepreneur and #1 New York Times Bestselling author. What does it truly mean to live a good life? Many fall into the trap of believing that nothing we have—or ever will have—can fill the voids we feel inside. If material possessions and physical desires aren’t the answer, then what are the keys to a happy and fulfilled life? Expect to learn how to build your self-esteem, strategies for not being so hard on yourself, how to balance ambition & gratitude, tips for taking life less seriously, the 3 important decisions you probably don’t know you make everyday, Tony Robbins’s morning routine, how to let go of your past, if Tony has found peace in his life, how to become better at pattern recognition and much more… Sponsors: See discounts for all the products I use and recommend: https://chriswillx.com/deals Get the best bloodwork analysis in America at https://functionhealth.com/modernwisdom Get a 20% discount on Nomatic’s amazing luggage at https://nomatic.com/modernwisdom Get a Free Sample Pack of all LMNT Flavours with any purchase at https://drinklmnt.com/modernwisdom Get a 20% discount on the best supplements from Momentous at https://livemomentous.com/modernwisdom Extra Stuff: Time To Rise Summit: https://timetorisesummit.com Get my free reading list of 100 books to read before you die: https://chriswillx.com/books Try my productivity energy drink Neutonic: https://neutonic.com/modernwisdom Episodes You Might Enjoy: #577 - David Goggins - This Is How To Master Your Life: https://tinyurl.com/43hv6y59 #712 - Dr Jordan Peterson - How To Destroy Your Negative Beliefs: https://tinyurl.com/2rtz7avf #700 - Dr Andrew Huberman - The Secret Tools To Hack Your Brain: https://tinyurl.com/3ccn5vkp - Get In Touch: Instagram: https://www.instagram.com/chriswillx Twitter: https://www.twitter.com/chriswillx YouTube: https://www.youtube.com/modernwisdompodcast Email: https://chriswillx.com/contact - Learn more about your ad choices. Visit megaphone.fm/adchoices

[Ride Home] Simon Willison: Things we learned about LLMs in 2024

From Latent Space: The AI Engineer Podcast

Due to overwhelming demand (>15x applications:slots), we are closing CFPs for AI Engineer Summit NYC today. Last call! Thanks, we’ll be reaching out to all shortly!The world’s top AI blogger and friend of every pod, Simon Willison, dropped a monster 2024 recap: Things we learned about LLMs in 2024. Brian of the excellent TechMeme Ride Home pinged us for a connection and a special crossover episode, our first in 2025. The target audience for this podcast is a tech-literate, but non-technical one. You can see Simon’s notes for AI Engineers in his World’s Fair Keynote.Timestamp* 00:00 Introduction and Guest Welcome* 01:06 State of AI in 2025* 01:43 Advancements in AI Models* 03:59 Cost Efficiency in AI* 06:16 Challenges and Competition in AI* 17:15 AI Agents and Their Limitations* 26:12 Multimodal AI and Future Prospects* 35:29 Exploring Video Avatar Companies* 36:24 AI Influencers and Their Future* 37:12 Simplifying Content Creation with AI* 38:30 The Importance of Credibility in AI* 41:36 The Future of LLM User Interfaces* 48:58 Local LLMs: A Growing Interest* 01:07:22 AI Wearables: The Next Big Thing* 01:10:16 Wrapping Up and Final ThoughtsTranscript[00:00:00] Introduction and Guest Welcome[00:00:00] Brian: Welcome to the first bonus episode of the Tech Meme Write Home for the year 2025. I'm your host as always, Brian McCullough. Listeners to the pod over the last year know that I have made a habit of quoting from Simon Willison when new stuff happens in AI from his blog. Simon has been, become a go to for many folks in terms of, you know, Analyzing things, criticizing things in the AI space.[00:00:33] Brian: I've wanted to talk to you for a long time, Simon. So thank you for coming on the show. No, it's a privilege to be here. And the person that made this connection happen is our friend Swyx, who has been on the show back, even going back to the, the Twitter Spaces days but also an AI guru in, in their own right Swyx, thanks for coming on the show also.[00:00:54] swyx (2): Thanks. I'm happy to be on and have been a regular listener, so just happy to [00:01:00] contribute as well.[00:01:00] Brian: And a good friend of the pod, as they say. Alright, let's go right into it.[00:01:06] State of AI in 2025[00:01:06] Brian: Simon, I'm going to do the most unfair, broad question first, so let's get it out of the way. The year 2025. Broadly, what is the state of AI as we begin this year?[00:01:20] Brian: Whatever you want to say, I don't want to lead the witness.[00:01:22] Simon: Wow. So many things, right? I mean, the big thing is everything's got really good and fast and cheap. Like, that was the trend throughout all of 2024. The good models got so much cheaper, they got so much faster, they got multimodal, right? The image stuff isn't even a surprise anymore.[00:01:39] Simon: They're growing video, all of that kind of stuff. So that's all really exciting.[00:01:43] Advancements in AI Models[00:01:43] Simon: At the same time, they didn't get massively better than GPT 4, which was a bit of a surprise. So that's sort of one of the open questions is, are we going to see huge, but I kind of feel like that's a bit of a distraction because GPT 4, but way cheaper, much larger context lengths, and it [00:02:00] can do multimodal.[00:02:01] Simon: is better, right? That's a better model, even if it's not.[00:02:05] Brian: What people were expecting or hoping, maybe not expecting is not the right word, but hoping that we would see another step change, right? Right. From like GPT 2 to 3 to 4, we were expecting or hoping that maybe we were going to see the next evolution in that sort of, yeah.[00:02:21] Brian: We[00:02:21] Simon: did see that, but not in the way we expected. We thought the model was just going to get smarter, and instead we got. Massive drops in, drops in price. We got all of these new capabilities. You can talk to the things now, right? They can do simulated audio input, all of that kind of stuff. And so it's kind of, it's interesting to me that the models improved in all of these ways we weren't necessarily expecting.[00:02:43] Simon: I didn't know it would be able to do an impersonation of Santa Claus, like a, you know, Talked to it through my phone and show it what I was seeing by the end of 2024. But yeah, we didn't get that GPT 5 step. And that's one of the big open questions is, is that actually just around the corner and we'll have a bunch of GPT 5 class models drop in the [00:03:00] next few months?[00:03:00] Simon: Or is there a limit?[00:03:03] Brian: If you were a betting man and wanted to put money on it, do you expect to see a phase change, step change in 2025?[00:03:11] Simon: I don't particularly for that, like, the models, but smarter. I think all of the trends we're seeing right now are going to keep on going, especially the inference time compute, right?[00:03:21] Simon: The trick that O1 and O3 are doing, which means that you can solve harder problems, but they cost more and it churns away for longer. I think that's going to happen because that's already proven to work. I don't know. I don't know. Maybe there will be a step change to a GPT 5 level, but honestly, I'd be completely happy if we got what we've got right now.[00:03:41] Simon: But cheaper and faster and more capabilities and longer contexts and so forth. That would be thrilling to me.[00:03:46] Brian: Digging into what you've just said one of the things that, by the way, I hope to link in the show notes to Simon's year end post about what, what things we learned about LLMs in 2024. Look for that in the show notes.[00:03:59] Cost Efficiency in AI[00:03:59] Brian: One of the things that you [00:04:00] did say that you alluded to even right there was that in the last year, you felt like the GPT 4 barrier was broken, like IE. Other models, even open source ones are now regularly matching sort of the state of the art.[00:04:13] Simon: Well, it's interesting, right? So the GPT 4 barrier was a year ago, the best available model was OpenAI's GPT 4 and nobody else had even come close to it.[00:04:22] Simon: And they'd been at the, in the lead for like nine months, right? That thing came out in what, February, March of, of 2023. And for the rest of 2023, nobody else came close. And so at the start of last year, like a year ago, the big question was, Why has nobody beaten them yet? Like, what do they know that the rest of the industry doesn't know?[00:04:40] Simon: And today, that I've counted 18 organizations other than GPT 4 who've put out a model which clearly beats that GPT 4 from a year ago thing. Like, maybe they're not better than GPT 4. 0, but that's, that, that, that barrier got completely smashed. And yeah, a few of those I've run on my laptop, which is wild to me.[00:04:59] Simon: Like, [00:05:00] it was very, very wild. It felt very clear to me a year ago that if you want GPT 4, you need a rack of 40, 000 GPUs just to run the thing. And that turned out not to be true. Like the, the, this is that big trend from last year of the models getting more efficient, cheaper to run, just as capable with smaller weights and so forth.[00:05:20] Simon: And I ran another GPT 4 model on my laptop this morning, right? Microsoft 5. 4 just came out. And that, if you look at the benchmarks, it's definitely, it's up there with GPT 4. 0. It's probably not as good when you actually get into the vibes of the thing, but it, it runs on my, it's a 14 gigabyte download and I can run it on a MacBook Pro.[00:05:38] Simon: Like who saw that coming? The most exciting, like the close of the year on Christmas day, just a few weeks ago, was when DeepSeek dropped their DeepSeek v3 model on Hugging Face without even a readme file. It was just like a giant binary blob that I can't run on my laptop. It's too big. But in all of the benchmarks, it's now by far the best available [00:06:00] open, open weights model.[00:06:01] Simon: Like it's, it's, it's beating the, the metalamas and so forth. And that was trained for five and a half million dollars, which is a tenth of the price that people thought it costs to train these things. So everything's trending smaller and faster and more efficient.[00:06:15] Brian: Well, okay.[00:06:16] Challenges and Competition in AI[00:06:16] Brian: I, I kind of was going to get to that later, but let's, let's combine this with what I was going to ask you next, which is, you know, you're talking, you know, Also in the piece about the LLM prices crashing, which I've even seen in projects that I'm working on, but explain Explain that to a general audience, because we hear all the time that LLMs are eye wateringly expensive to run, but what we're suggesting, and we'll come back to the cheap Chinese LLM, but first of all, for the end user, what you're suggesting is that we're starting to see the cost come down sort of in the traditional technology way of Of costs coming down over time,[00:06:49] Simon: yes, but very aggressively.[00:06:51] Simon: I mean, my favorite thing, the example here is if you look at GPT-3, so open AI's g, PT three, which was the best, a developed model in [00:07:00] 2022 and through most of 20 2023. That, the models that we have today, the OpenAI models are a hundred times cheaper. So there was a 100x drop in price for OpenAI from their best available model, like two and a half years ago to today.[00:07:13] Simon: And[00:07:14] Brian: just to be clear, not to train the model, but for the use of tokens and things. Exactly,[00:07:20] Simon: for running prompts through them. And then When you look at the, the really, the top tier model providers right now, I think, are OpenAI, Anthropic, Google, and Meta. And there are a bunch of others that I could list there as well.[00:07:32] Simon: Mistral are very good. The, the DeepSeq and Quen models have got great. There's a whole bunch of providers serving really good models. But even if you just look at the sort of big brand name providers, they all offer models now that are A fraction of the price of the, the, of the models we were using last year.[00:07:49] Simon: I think I've got some numbers that I threw into my blog entry here. Yeah. Like Gemini 1. 5 flash, that's Google's fast high quality model is [00:08:00] how much is that? It's 0. 075 dollars per million tokens. Like these numbers are getting, So we just do cents per million now,[00:08:09] swyx (2): cents per million,[00:08:10] Simon: cents per million makes, makes a lot more sense.[00:08:12] Simon: Yeah they have one model 1. 5 flash 8B, the absolute cheapest of the Google models, is 27 times cheaper than GPT 3. 5 turbo was a year ago. That's it. And GPT 3. 5 turbo, that was the cheap model, right? Now we've got something 27 times cheaper, and the Google, this Google one can do image recognition, it can do million token context, all of those tricks.[00:08:36] Simon: But it's, it's, it's very, it's, it really is startling how inexpensive some of this stuff has got.[00:08:41] Brian: Now, are we assuming that this, that happening is directly the result of competition? Because again, you know, OpenAI, and probably they're doing this for their own almost political reasons, strategic reasons, keeps saying, we're losing money on everything, even the 200.[00:08:56] Brian: So they probably wouldn't, the prices wouldn't be [00:09:00] coming down if there wasn't intense competition in this space.[00:09:04] Simon: The competition is absolutely part of it, but I have it on good authority from sources I trust that Google Gemini is not operating at a loss. Like, the amount of electricity to run a prompt is less than they charge you.[00:09:16] Simon: And the same thing for Amazon Nova. Like, somebody found an Amazon executive and got them to say, Yeah, we're not losing money on this. I don't know about Anthropic and OpenAI, but clearly that demonstrates it is possible to run these things at these ludicrously low prices and still not be running at a loss if you discount the Army of PhDs and the, the training costs and all of that kind of stuff.[00:09:36] Brian: One, one more for me before I let Swyx jump in here. To, to come back to DeepSeek and this idea that you could train, you know, a cutting edge model for 6 million. I, I was saying on the show, like six months ago, that if we are getting to the point where each new model It would cost a billion, ten billion, a hundred billion to train that.[00:09:54] Brian: At some point it would almost, only nation states would be able to train the new models. Do you [00:10:00] expect what DeepSeek and maybe others are proving to sort of blow that up? Or is there like some sort of a parallel track here that maybe I'm not technically, I don't have the mouse to understand the difference.[00:10:11] Brian: Is the model, are the models going to go, you know, Up to a hundred billion dollars or can we get them down? Sort of like DeepSeek has proven[00:10:18] Simon: so I'm the wrong person to answer that because I don't work in the lab training these models. So I can give you my completely uninformed opinion, which is, I felt like the DeepSeek thing.[00:10:27] Simon: That was a bomb shell. That was an absolute bombshell when they came out and said, Hey, look, we've trained. One of the best available models and it cost us six, five and a half million dollars to do it. I feel, and they, the reason, one of the reasons it's so efficient is that we put all of these export controls in to stop Chinese companies from giant buying GPUs.[00:10:44] Simon: So they've, were forced to be, go as efficient as possible. And yet the fact that they've demonstrated that that's possible to do. I think it does completely tear apart this, this, this mental model we had before that yeah, the training runs just keep on getting more and more expensive and the number of [00:11:00] organizations that can afford to run these training runs keeps on shrinking.[00:11:03] Simon: That, that's been blown out of the water. So yeah, that's, again, this was our Christmas gift. This was the thing they dropped on Christmas day. Yeah, it makes me really optimistic that we can, there are, It feels like there was so much low hanging fruit in terms of the efficiency of both inference and training and we spent a whole bunch of last year exploring that and getting results from it.[00:11:22] Simon: I think there's probably a lot left. I think there's probably, well, I would not be surprised to see even better models trained spending even less money over the next six months.[00:11:31] swyx (2): Yeah. So I, I think there's a unspoken angle here on what exactly the Chinese labs are trying to do because DeepSea made a lot of noise.[00:11:41] swyx (2): so much for joining us for around the fact that they train their model for six million dollars and nobody quite quite believes them. Like it's very, very rare for a lab to trumpet the fact that they're doing it for so cheap. They're not trying to get anyone to buy them. So why [00:12:00] are they doing this? They make it very, very obvious.[00:12:05] swyx (2): Deepseek is about 150 employees. It's an order of magnitude smaller than at least Anthropic and maybe, maybe more so for OpenAI. And so what's, what's the end game here? Are they, are they just trying to show that the Chinese are better than us?[00:12:21] Simon: So Deepseek, it's the arm of a hedge, it's a, it's a quant fund, right?[00:12:25] Simon: It's an algorithmic quant trading thing. So I, I, I would love to get more insight into how that organization works. My assumption from what I've seen is it looks like they're basically just flexing. They're like, hey, look at how utterly brilliant we are with this amazing thing that we've done. And it's, it's working, right?[00:12:43] Simon: They but, and so is that it? Are they, is this just their kind of like, this is, this is why our company is so amazing. Look at this thing that we've done, or? I don't know. I'd, I'd love to get Some insight from, from within that industry as to, as to how that's all playing out.[00:12:57] swyx (2): The, the prevailing theory among the Local Llama [00:13:00] crew and the Twitter crew that I indexed for my newsletter is that there is some amount of copying going on.[00:13:06] swyx (2): It's like Sam Altman you know, tweet, tweeting about how they're being copied. And then also there's this, there, there are other sort of opening eye employees that have said, Stuff that is similar that DeepSeek's rate of progress is how U. S. intelligence estimates the number of foreign spies embedded in top labs.[00:13:22] swyx (2): Because a lot of these ideas do spread around, but they surprisingly have a very high density of them in the DeepSeek v3 technical report. So it's, it's interesting. We don't know how much, how many, how much tokens. I think that, you know, people have run analysis on how often DeepSeek thinks it is cloud or thinks it is opening GPC 4.[00:13:40] swyx (2): Thanks for watching! And we don't, we don't know. We don't know. I think for me, like, yeah, we'll, we'll, we basically will never know as, as external commentators. I think what's interesting is how, where does this go? Is there a logical floor or bottom by my estimations for the same amount of ELO started last year to the end of last year cost went down by a thousand X for the [00:14:00] GPT, for, for GPT 4 intelligence.[00:14:02] swyx (2): Would, do they go down a thousand X this year?[00:14:04] Simon: That's a fascinating question. Yeah.[00:14:06] swyx (2): Is there a Moore's law going on, or did we just get a one off benefit last year for some weird reason?[00:14:14] Simon: My uninformed hunch is low hanging fruit. I feel like up until a year ago, people haven't been focusing on efficiency at all. You know, it was all about, what can we get these weird shaped things to do?[00:14:24] Simon: And now once we've sort of hit that, okay, we know that we can get them to do what GPT 4 can do, When thousands of researchers around the world all focus on, okay, how do we make this more efficient? What are the most important, like, how do we strip out all of the weights that have stuff in that doesn't really matter?[00:14:39] Simon: All of that kind of thing. So yeah, maybe that was it. Maybe 2024 was a freak year of all of the low hanging fruit coming out at once. And we'll actually see a reduction in the, in that rate of improvement in terms of efficiency. I wonder, I mean, I think we'll know for sure in about three months time if that trend's going to continue or not.[00:14:58] swyx (2): I agree. You know, I [00:15:00] think the other thing that you mentioned that DeepSeq v3 was the gift that was given from DeepSeq over Christmas, but I feel like the other thing that might be underrated was DeepSeq R1,[00:15:11] Speaker 4: which is[00:15:13] swyx (2): a reasoning model you can run on your laptop. And I think that's something that a lot of people are looking ahead to this year.[00:15:18] swyx (2): Oh, did they[00:15:18] Simon: release the weights for that one?[00:15:20] swyx (2): Yeah.[00:15:21] Simon: Oh my goodness, I missed that. I've been playing with the quen. So the other great, the other big Chinese AI app is Alibaba's quen. Actually, yeah, I, sorry, R1 is an API available. Yeah. Exactly. When that's really cool. So Alibaba's Quen have released two reasoning models that I've run on my laptop.[00:15:38] Simon: Now there was, the first one was Q, Q, WQ. And then the second one was QVQ because the second one's a vision model. So you can like give it vision puzzles and a prompt that these things, they are so much fun to run. Because they think out loud. It's like the OpenAR 01 sort of hides its thinking process. The Query ones don't.[00:15:59] Simon: They just, they [00:16:00] just churn away. And so you'll give it a problem and it will output literally dozens of paragraphs of text about how it's thinking. My favorite thing that happened with QWQ is I asked it to draw me a pelican on a bicycle in SVG. That's like my standard stupid prompt. And for some reason it thought in Chinese.[00:16:18] Simon: It spat out a whole bunch of like Chinese text onto my terminal on my laptop, and then at the end it gave me quite a good sort of artistic pelican on a bicycle. And I ran it all through Google Translate, and yeah, it was like, it was contemplating the nature of SVG files as a starting point. And the fact that my laptop can think in Chinese now is so delightful.[00:16:40] Simon: It's so much fun watching you do that.[00:16:43] swyx (2): Yeah, I think Andrej Karpathy was saying, you know, we, we know that we have achieved proper reasoning inside of these models when they stop thinking in English, and perhaps the best form of thought is in Chinese. But yeah, for listeners who don't know Simon's blog he always, whenever a new model comes out, you, I don't know how you do it, but [00:17:00] you're always the first to run Pelican Bench on these models.[00:17:02] swyx (2): I just did it for 5.[00:17:05] Simon: Yeah.[00:17:07] swyx (2): So I really appreciate that. You should check it out. These are not theoretical. Simon's blog actually shows them.[00:17:12] Brian: Let me put on the investor hat for a second.[00:17:15] AI Agents and Their Limitations[00:17:15] Brian: Because from the investor side of things, a lot of the, the VCs that I know are really hot on agents, and this is the year of agents, but last year was supposed to be the year of agents as well. Lots of money flowing towards, And Gentic startups.[00:17:32] Brian: But in in your piece that again, we're hopefully going to have linked in the show notes, you sort of suggest there's a fundamental flaw in AI agents as they exist right now. Let me let me quote you. And then I'd love to dive into this. You said, I remain skeptical as to their ability based once again, on the Challenge of gullibility.[00:17:49] Brian: LLMs believe anything you tell them, any systems that attempt to make meaningful decisions on your behalf, will run into the same roadblock. How good is a travel agent, or a digital assistant, or even a research tool, if it [00:18:00] can't distinguish truth from fiction? So, essentially, what you're suggesting is that the state of the art now that allows agents is still, it's still that sort of 90 percent problem, the edge problem, getting to the Or, or, or is there a deeper flaw?[00:18:14] Brian: What are you, what are you saying there?[00:18:16] Simon: So this is the fundamental challenge here and honestly my frustration with agents is mainly around definitions Like any if you ask anyone who says they're working on agents to define agents You will get a subtly different definition from each person But everyone always assumes that their definition is the one true one that everyone else understands So I feel like a lot of these agent conversations, people talking past each other because one person's talking about the, the sort of travel agent idea of something that books things on your behalf.[00:18:41] Simon: Somebody else is talking about LLMs with tools running in a loop with a cron job somewhere and all of these different things. You, you ask academics and they'll laugh at you because they've been debating what agents mean for over 30 years at this point. It's like this, this long running, almost sort of an in joke in that community.[00:18:57] Simon: But if we assume that for this purpose of this conversation, an [00:19:00] agent is something that, Which you can give a job and it goes off and it does that thing for you like, like booking travel or things like that. The fundamental challenge is, it's the reliability thing, which comes from this gullibility problem.[00:19:12] Simon: And a lot of my, my interest in this originally came from when I was thinking about prompt injections as a source of this form of attack against LLM systems where you deliberately lay traps out there for this LLM to stumble across,[00:19:24] Brian: and which I should say you have been banging this drum that no one's gotten any far, at least on solving this, that I'm aware of, right.[00:19:31] Brian: Like that's still an open problem. The two years.[00:19:33] Simon: Yeah. Right. We've been talking about this problem and like, a great illustration of this was Claude so Anthropic released Claude computer use a few months ago. Fantastic demo. You could fire up a Docker container and you could literally tell it to do something and watch it open a web browser and navigate to a webpage and click around and so forth.[00:19:51] Simon: Really, really, really interesting and fun to play with. And then, um. One of the first demos somebody tried was, what if you give it a web page that says download and run this [00:20:00] executable, and it did, and the executable was malware that added it to a botnet. So the, the very first most obvious dumb trick that you could play on this thing just worked, right?[00:20:10] Simon: So that's obviously a really big problem. If I'm going to send something out to book travel on my behalf, I mean, it's hard enough for me to figure out which airlines are trying to scam me and which ones aren't. Do I really trust a language model that believes the literal truth of anything that's presented to it to go out and do those things?[00:20:29] swyx (2): Yeah I definitely think there's, it's interesting to see Anthropic doing this because they used to be the safety arm of OpenAI that split out and said, you know, we're worried about letting this thing out in the wild and here they are enabling computer use for agents. Thanks. The, it feels like things have merged.[00:20:49] swyx (2): You know, I'm, I'm also fairly skeptical about, you know, this always being the, the year of Linux on the desktop. And this is the equivalent of this being the year of agents that people [00:21:00] are not predicting so much as wishfully thinking and hoping and praying for their companies and agents to work.[00:21:05] swyx (2): But I, I feel like things are. Coming along a little bit. It's to me, it's kind of like self driving. I remember in 2014 saying that self driving was just around the corner. And I mean, it kind of is, you know, like in, in, in the Bay area. You[00:21:17] Simon: get in a Waymo and you're like, Oh, this works. Yeah, but it's a slow[00:21:21] swyx (2): cook.[00:21:21] swyx (2): It's a slow cook over the next 10 years. We're going to hammer out these things and the cynical people can just point to all the flaws, but like, there are measurable or concrete progress steps that are being made by these builders.[00:21:33] Simon: There is one form of agent that I believe in. I believe, mostly believe in the research assistant form of agents.[00:21:39] Simon: The thing where you've got a difficult problem and, and I've got like, I'm, I'm on the beta for the, the Google Gemini 1. 5 pro with deep research. I think it's called like these names, these names. Right. But. I've been using that. It's good, right? You can give it a difficult problem and it tells you, okay, I'm going to look at 56 different websites [00:22:00] and it goes away and it dumps everything to its context and it comes up with a report for you.[00:22:04] Simon: And it's not, it won't work against adversarial websites, right? If there are websites with deliberate lies in them, it might well get caught out. Most things don't have that as a problem. And so I've had some answers from that which were genuinely really valuable to me. And that feels to me like, I can see how given existing LLM tech, especially with Google Gemini with its like million token contacts and Google with their crawl of the entire web and their, they've got like search, they've got search and cache, they've got a cache of every page and so forth.[00:22:35] Simon: That makes sense to me. And that what they've got right now, I don't think it's, it's not as good as it can be, obviously, but it's, it's, it's, it's a real useful thing, which they're going to start rolling out. So, you know, Perplexity have been building the same thing for a couple of years. That, that I believe in.[00:22:50] Simon: You know, if you tell me that you're going to have an agent that's a research assistant agent, great. The coding agents I mean, chat gpt code interpreter, Nearly two years [00:23:00] ago, that thing started writing Python code, executing the code, getting errors, rewriting it to fix the errors. That pattern obviously works.[00:23:07] Simon: That works really, really well. So, yeah, coding agents that do that sort of error message loop thing, those are proven to work. And they're going to keep on getting better, and that's going to be great. The research assistant agents are just beginning to get there. The things I'm critical of are the ones where you trust, you trust this thing to go out and act autonomously on your behalf, and make decisions on your behalf, especially involving spending money, like that.[00:23:31] Simon: I don't see that working for a very long time. That feels to me like an AGI level problem.[00:23:37] swyx (2): It's it's funny because I think Stripe actually released an agent toolkit which is one of the, the things I featured that is trying to enable these agents each to have a wallet that they can go and spend and have, basically, it's a virtual card.[00:23:49] swyx (2): It's not that, not that difficult with modern infrastructure. can[00:23:51] Simon: stick a 50 cap on it, then at least it's an honor. Can't lose more than 50.[00:23:56] Brian: You know I don't, I don't know if either of you know Rafat Ali [00:24:00] he runs Skift, which is a, a travel news vertical. And he, he, he constantly laughs at the fact that every agent thing is, we're gonna get rid of booking a, a plane flight for you, you know?[00:24:11] Brian: And, and I would point out that, like, historically, when the web started, the first thing everyone talked about is, You can go online and book a trip, right? So it's funny for each generation of like technological advance. The thing they always want to kill is the travel agent. And now they want to kill the webpage travel agent.[00:24:29] Simon: Like it's like I use Google flight search. It's great, right? If you gave me an agent to do that for me, it would save me, I mean, maybe 15 seconds of typing in my things, but I still want to see what my options are and go, yeah, I'm not flying on that airline, no matter how cheap they are.[00:24:44] swyx (2): Yeah. For listeners, go ahead.[00:24:47] swyx (2): For listeners, I think, you know, I think both of you are pretty positive on NotebookLM. And you know, we, we actually interviewed the NotebookLM creators, and there are actually two internal agents going on internally. The reason it takes so long is because they're running an agent loop [00:25:00] inside that is fairly autonomous, which is kind of interesting.[00:25:01] swyx (2): For one,[00:25:02] Simon: for a definition of agent loop, if you picked that particularly well. For one definition. And you're talking about the podcast side of this, right?[00:25:07] swyx (2): Yeah, the podcast side of things. They have a there's, there's going to be a new version coming out that, that we'll be featuring at our, at our conference.[00:25:14] Simon: That one's fascinating to me. Like NotebookLM, I think it's two products, right? On the one hand, it's actually a very good rag product, right? You dump a bunch of things in, you can run searches, that, that, it does a good job of. And then, and then they added the, the podcast thing. It's a bit of a, it's a total gimmick, right?[00:25:30] Simon: But that gimmick got them attention, because they had a great product that nobody paid any attention to at all. And then you add the unfeasibly good voice synthesis of the podcast. Like, it's just, it's, it's, it's the lesson.[00:25:43] Brian: It's the lesson of mid journey and stuff like that. If you can create something that people can post on socials, you don't have to lift a finger again to do any marketing for what you're doing.[00:25:53] Brian: Let me dig into Notebook LLM just for a second as a podcaster. As a [00:26:00] gimmick, it makes sense, and then obviously, you know, you dig into it, it sort of has problems around the edges. It's like, it does the thing that all sort of LLMs kind of do, where it's like, oh, we want to Wrap up with a conclusion.[00:26:12] Multimodal AI and Future Prospects[00:26:12] Brian: I always call that like the the eighth grade book report paper problem where it has to have an intro and then, you know But that's sort of a thing where because I think you spoke about this again in your piece at the year end About how things are going multimodal and how things are that you didn't expect like, you know vision and especially audio I think So that's another thing where, at least over the last year, there's been progress made that maybe you, you didn't think was coming as quick as it came.[00:26:43] Simon: I don't know. I mean, a year ago, we had one really good vision model. We had GPT 4 vision, was, was, was very impressive. And Google Gemini had just dropped Gemini 1. 0, which had vision, but nobody had really played with it yet. Like Google hadn't. People weren't taking Gemini [00:27:00] seriously at that point. I feel like it was 1.[00:27:02] Simon: 5 Pro when it became apparent that actually they were, they, they got over their hump and they were building really good models. And yeah, and they, to be honest, the video models are mostly still using the same trick. The thing where you divide the video up into one image per second and you dump that all into the context.[00:27:16] Simon: So maybe it shouldn't have been so surprising to us that long context models plus vision meant that the video was, was starting to be solved. Of course, it didn't. Not being, you, what you really want with videos, you want to be able to do the audio and the images at the same time. And I think the models are beginning to do that now.[00:27:33] Simon: Like, originally, Gemini 1. 5 Pro originally ignored the audio. It just did the, the, like, one frame per second video trick. As far as I can tell, the most recent ones are actually doing pure multimodal. But the things that opens up are just extraordinary. Like, the the ChatGPT iPhone app feature that they shipped as one of their 12 days of, of OpenAI, I really can be having a conversation and just turn on my video camera and go, Hey, what kind of tree is [00:28:00] this?[00:28:00] Simon: And so forth. And it works. And for all I know, that's just snapping a like picture once a second and feeding it into the model. The, the, the things that you can do with that as an end user are extraordinary. Like that, that to me, I don't think most people have cottoned onto the fact that you can now stream video directly into a model because it, it's only a few weeks old.[00:28:22] Simon: Wow. That's a, that's a, that's a, that's Big boost in terms of what kinds of things you can do with this stuff. Yeah. For[00:28:30] swyx (2): people who are not that close I think Gemini Flashes free tier allows you to do something like capture a photo, one photo every second or a minute and leave it on 24, seven, and you can prompt it to do whatever.[00:28:45] swyx (2): And so you can effectively have your own camera app or monitoring app that that you just prompt and it detects where it changes. It detects for, you know, alerts or anything like that, or describes your day. You know, and, and, and the fact that this is free I think [00:29:00] it's also leads into the previous point of it being the prices haven't come down a lot.[00:29:05] Simon: And even if you're paying for this stuff, like a thing that I put in my blog entry is I ran a calculation on what it would cost to process 68, 000 photographs in my photo collection, and for each one just generate a caption, and using Gemini 1. 5 Flash 8B, it would cost me 1. 68 to process 68, 000 images, which is, I mean, that, that doesn't make sense.[00:29:28] Simon: None of that makes sense. Like it's, it's a, for one four hundredth of a cent per image to generate captions now. So you can see why feeding in a day's worth of video just isn't even very expensive to process.[00:29:40] swyx (2): Yeah, I'll tell you what is expensive. It's the other direction. So we're here, we're talking about consuming video.[00:29:46] swyx (2): And this year, we also had a lot of progress, like probably one of the most excited, excited, anticipated launches of the year was Sora. We actually got Sora. And less exciting.[00:29:55] Simon: We did, and then VO2, Google's Sora, came out like three [00:30:00] days later and upstaged it. Like, Sora was exciting until VO2 landed, which was just better.[00:30:05] swyx (2): In general, I feel the media, or the social media, has been very unfair to Sora. Because what was released to the world, generally available, was Sora Lite. It's the distilled version of Sora, right? So you're, I did not[00:30:16] Simon: realize that you're absolutely comparing[00:30:18] swyx (2): the, the most cherry picked version of VO two, the one that they published on the marketing page to the, the most embarrassing version of the soa.[00:30:25] swyx (2): So of course it's gonna look bad, so, well, I got[00:30:27] Simon: access to the VO two I'm in the VO two beta and I've been poking around with it and. Getting it to generate pelicans on bicycles and stuff. I would absolutely[00:30:34] swyx (2): believe that[00:30:35] Simon: VL2 is actually better. Is Sora, so is full fat Sora coming soon? Do you know, when, when do we get to play with that one?[00:30:42] Simon: No one's[00:30:43] swyx (2): mentioned anything. I think basically the strategy is let people play around with Sora Lite and get info there. But the, the, keep developing Sora with the Hollywood studios. That's what they actually care about. Gotcha. Like the rest of us. Don't really know what to do with the video anyway. Right.[00:30:59] Simon: I mean, [00:31:00] that's my thing is I realized that for generative images and images and video like images We've had for a few years and I don't feel like they've broken out into the talented artist community yet Like lots of people are having fun with them and doing and producing stuff. That's kind of cool to look at but what I want you know that that movie everything everywhere all at once, right?[00:31:20] Simon: One, one ton of Oscars, utterly amazing film. The VFX team for that were five people, some of whom were watching YouTube videos to figure out what to do. My big question for, for Sora and and and Midjourney and stuff, what happens when a creative team like that starts using these tools? I want the creative geniuses behind everything, everywhere all at once.[00:31:40] Simon: What are they going to be able to do with this stuff in like a few years time? Because that's really exciting to me. That's where you take artists who are at the very peak of their game. Give them these new capabilities and see, see what they can do with them.[00:31:52] swyx (2): I should, I know a little bit here. So it should mention that, that team actually used RunwayML.[00:31:57] swyx (2): So there was, there was,[00:31:57] Simon: yeah.[00:31:59] swyx (2): I don't know how [00:32:00] much I don't. So, you know, it's possible to overstate this, but there are people integrating it. Generated video within their workflow, even pre SORA. Right, because[00:32:09] Brian: it's not, it's not the thing where it's like, okay, tomorrow we'll be able to do a full two hour movie that you prompt with three sentences.[00:32:15] Brian: It is like, for the very first part of, of, you know video effects in film, it's like, if you can get that three second clip, if you can get that 20 second thing that they did in the matrix that blew everyone's minds and took a million dollars or whatever to do, like, it's the, it's the little bits and pieces that they can fill in now that it's probably already there.[00:32:34] swyx (2): Yeah, it's like, I think actually having a layered view of what assets people need and letting AI fill in the low value assets. Right, like the background video, the background music and, you know, sometimes the sound effects. That, that maybe, maybe more palatable maybe also changes the, the way that you evaluate the stuff that's coming out.[00:32:57] swyx (2): Because people tend to, in social media, try to [00:33:00] emphasize foreground stuff, main character stuff. So you really care about consistency, and you, you really are bothered when, like, for example, Sorad. Botch's image generation of a gymnast doing flips, which is horrible. It's horrible. But for background crowds, like, who cares?[00:33:18] Brian: And by the way, again, I was, I was a film major way, way back in the day, like, that's how it started. Like things like Braveheart, where they filmed 10 people on a field, and then the computer could turn it into 1000 people on a field. Like, that's always been the way it's around the margins and in the background that first comes in.[00:33:36] Brian: The[00:33:36] Simon: Lord of the Rings movies were over 20 years ago. Although they have those giant battle sequences, which were very early, like, I mean, you could almost call it a generative AI approach, right? They were using very sophisticated, like, algorithms to model out those different battles and all of that kind of stuff.[00:33:52] Simon: Yeah, I know very little. I know basically nothing about film production, so I try not to commentate on it. But I am fascinated to [00:34:00] see what happens when, when these tools start being used by the real, the people at the top of their game.[00:34:05] swyx (2): I would say like there's a cultural war that is more that being fought here than a technology war.[00:34:11] swyx (2): Most of the Hollywood people are against any form of AI anyway, so they're busy Fighting that battle instead of thinking about how to adopt it and it's, it's very fringe. I participated here in San Francisco, one generative AI video creative hackathon where the AI positive artists actually met with technologists like myself and then we collaborated together to build short films and that was really nice and I think, you know, I'll be hosting some of those in my events going forward.[00:34:38] swyx (2): One thing that I think like I want to leave it. Give people a sense of it's like this is a recap of last year But then sometimes it's useful to walk away as well with like what can we expect in the future? I don't know if you got anything. I would also call out that the Chinese models here have made a lot of progress Hyde Law and Kling and God knows who like who else in the video arena [00:35:00] Also making a lot of progress like surprising him like I think maybe actually Chinese China is surprisingly ahead with regards to Open8 at least, but also just like specific forms of video generation.[00:35:12] Simon: Wouldn't it be interesting if a film industry sprung up in a country that we don't normally think of having a really strong film industry that was using these tools? Like, that would be a fascinating sort of angle on this. Mm hmm. Mm hmm.[00:35:25] swyx (2): Agreed. I, I, I Oh, sorry. Go ahead.[00:35:29] Exploring Video Avatar Companies[00:35:29] swyx (2): Just for people's Just to put it on people's radar as well, Hey Jen, there's like there's a category of video avatar companies that don't specifically, don't specialize in general video.[00:35:41] swyx (2): They only do talking heads, let's just say. And HeyGen sings very well.[00:35:45] Brian: Swyx, you know that that's what I've been using, right? Like, have, have I, yeah, right. So, if you see some of my recent YouTube videos and things like that, where, because the beauty part of the HeyGen thing is, I, I, I don't want to use the robot voice, so [00:36:00] I record the mp3 file for my computer, And then I put that into HeyGen with the avatar that I've trained it on, and all it does is the lip sync.[00:36:09] Brian: So it looks, it's not 100 percent uncanny valley beatable, but it's good enough that if you weren't looking for it, it's just me sitting there doing one of my clips from the show. And, yeah, so, by the way, HeyGen. Shout out to them.[00:36:24] AI Influencers and Their Future[00:36:24] swyx (2): So I would, you know, in terms of like the look ahead going, like, looking, reviewing 2024, looking at trends for 2025, I would, they basically call this out.[00:36:33] swyx (2): Meta tried to introduce AI influencers and failed horribly because they were just bad at it. But at some point that there will be more and more basically AI influencers Not in a way that Simon is but in a way that they are not human.[00:36:50] Simon: Like the few of those that have done well, I always feel like they're doing well because it's a gimmick, right?[00:36:54] Simon: It's a it's it's novel and fun to like Like that, the AI Seinfeld thing [00:37:00] from last year, the Twitch stream, you know, like those, if you're the only one or one of just a few doing that, you'll get, you'll attract an audience because it's an interesting new thing. But I just, I don't know if that's going to be sustainable longer term or not.[00:37:11] Simon: Like,[00:37:12] Simplifying Content Creation with AI[00:37:12] Brian: I'm going to tell you, Because I've had discussions, I can't name the companies or whatever, but, so think about the workflow for this, like, now we all know that on TikTok and Instagram, like, holding up a phone to your face, and doing like, in my car video, or walking, a walk and talk, you know, that's, that's very common, but also, if you want to do a professional sort of talking head video, you still have to sit in front of a camera, you still have to do the lighting, you still have to do the video editing, versus, if you can just record, what I'm saying right now, the last 30 seconds, If you clip that out as an mp3 and you have a good enough avatar, then you can put that avatar in front of Times Square, on a beach, or whatever.[00:37:50] Brian: So, like, again for creators, the reason I think Simon, we're on the verge of something, it, it just, it's not going to, I think it's not, oh, we're going to have [00:38:00] AI avatars take over, it'll be one of those things where it takes another piece of the workflow out and simplifies it. I'm all[00:38:07] Simon: for that. I, I always love this stuff.[00:38:08] Simon: I like tools. Tools that help human beings do more. Do more ambitious things. I'm always in favor of, like, that, that, that's what excites me about this entire field.[00:38:17] swyx (2): Yeah. We're, we're looking into basically creating one for my podcast. We have this guy Charlie, he's Australian. He's, he's not real, but he pre, he opens every show and we are gonna have him present all the shorts.[00:38:29] Simon: Yeah, go ahead.[00:38:30] The Importance of Credibility in AI[00:38:30] Simon: The thing that I keep coming back to is this idea of credibility like in a world that is full of like AI generated everything and so forth It becomes even more important that people find the sources of information that they trust and find people and find Sources that are credible and I feel like that's the one thing that LLMs and AI can never have is credibility, right?[00:38:49] Simon: ChatGPT can never stake its reputation on telling you something useful and interesting because That means nothing, right? It's a matrix multiplication. It depends on who prompted it and so forth. So [00:39:00] I'm always, and this is when I'm blogging as well, I'm always looking for, okay, who are the reliable people who will tell me useful, interesting information who aren't just going to tell me whatever somebody's paying them to tell, tell them, who aren't going to, like, type a one sentence prompt into an LLM and spit out an essay and stick it online.[00:39:16] Simon: And that, that to me, Like, earning that credibility is really important. That's why a lot of my ethics around the way that I publish are based on the idea that I want people to trust me. I want to do things that, that gain credibility in people's eyes so they will come to me for information as a trustworthy source.[00:39:32] Simon: And it's the same for the sources that I'm, I'm consulting as well. So that's something I've, I've been thinking a lot about that sort of credibility focus on this thing for a while now.[00:39:40] swyx (2): Yeah, you can layer or structure credibility or decompose it like so one thing I would put in front of you I'm not saying that you should Agree with this or accept this at all is that you can use AI to generate different Variations and then and you pick you as the final sort of last mile person that you pick The last output and [00:40:00] you put your stamp of credibility behind that like that everything's human reviewed instead of human origin[00:40:04] Simon: Yeah, if you publish something you need to be able to put it on the ground Publishing it.[00:40:08] Simon: You need to say, I will put my name to this. I will attach my credibility to this thing. And if you're willing to do that, then, then that's great.[00:40:16] swyx (2): For creators, this is huge because there's a fundamental asymmetry between starting with a blank slate versus choosing from five different variations.[00:40:23] Brian: Right.[00:40:24] Brian: And also the key thing that you just said is like, if everything that I do, if all of the words were generated by an LLM, if the voice is generated by an LLM. If the video is also generated by the LLM, then I haven't done anything, right? But if, if one or two of those, you take a shortcut, but it's still, I'm willing to sign off on it.[00:40:47] Brian: Like, I feel like that's where I feel like people are coming around to like, this is maybe acceptable, sort of.[00:40:53] Simon: This is where I've been pushing the definition. I love the term slop. Where I've been pushing the definition of slop as AI generated [00:41:00] content that is both unrequested and unreviewed and the unreviewed thing is really important like that's the thing that elevates something from slop to not slop is if A human being has reviewed it and said, you know what, this is actually worth other people's time.[00:41:12] Simon: And again, I'm willing to attach my credibility to it and say, hey, this is worthwhile.[00:41:16] Brian: It's, it's, it's the cura curational, curatorial and editorial part of it that no matter what the tools are to do shortcuts, to do, as, as Swyx is saying choose between different edits or different cuts, but in the end, if there's a curatorial mind, Or editorial mind behind it.[00:41:32] Brian: Let me I want to wedge this in before we start to close.[00:41:36] The Future of LLM User Interfaces[00:41:36] Brian: One of the things coming back to your year end piece that has been a something that I've been banging the drum about is when you're talking about LLMs. Getting harder to use. You said most users are thrown in at the deep end.[00:41:48] Brian: The default LLM chat UI is like taking brand new computer users, dropping them into a Linux terminal and expecting them to figure it all out. I mean, it's, it's literally going back to the command line. The command line was defeated [00:42:00] by the GUI interface. And this is what I've been banging the drum about is like, this cannot be.[00:42:05] Brian: The user interface, what we have now cannot be the end result. Do you see any hints or seeds of a GUI moment for LLM interfaces?[00:42:17] Simon: I mean, it has to happen. It absolutely has to happen. The the, the, the, the usability of these things is turning into a bit of a crisis. And we are at least seeing some really interesting innovation in little directions.[00:42:28] Simon: Just like OpenAI's chat GPT canvas thing that they just launched. That is at least. Going a little bit more interesting than just chat, chats and responses. You know, you can, they're exploring that space where you're collaborating with an LLM. You're both working in the, on the same document. That makes a lot of sense to me.[00:42:44] Simon: Like that, that feels really smart. The one of the best things is still who was it who did the, the UI where you could, they had a drawing UI where you draw an interface and click a button. TL draw would then make it real thing. That was spectacular, [00:43:00] absolutely spectacular, like, alternative vision of how you'd interact with these models.[00:43:05] Simon: Because yeah, the and that's, you know, so I feel like there is so much scope for innovation there and it is beginning to happen. Like, like, I, I feel like most people do understand that we need to do better in terms of interfaces that both help explain what's going on and give people better tools for working with models.[00:43:23] Simon: I was going to say, I want to[00:43:25] Brian: dig a little deeper into this because think of the conceptual idea behind the GUI, which is instead of typing into a command line open word. exe, it's, you, you click an icon, right? So that's abstracting away sort of the, again, the programming stuff that like, you know, it's, it's a, a, a child can tap on an iPad and, and make a program open, right?[00:43:47] Brian: The problem it seems to me right now with how we're interacting with LLMs is it's sort of like you know a dumb robot where it's like you poke it and it goes over here, but no, I want it, I want to go over here so you poke it this way and you can't get it exactly [00:44:00] right, like, what can we abstract away from the From the current, what's going on that, that makes it more fine tuned and easier to get more precise.[00:44:12] Brian: You see what I'm saying?[00:44:13] Simon: Yes. And the this is the other trend that I've been following from the last year, which I think is super interesting. It's the, the prompt driven UI development thing. Basically, this is the pattern where Claude Artifacts was the first thing to do this really well. You type in a prompt and it goes, Oh, I should answer that by writing a custom HTML and JavaScript application for you that does a certain thing.[00:44:35] Simon: And when you think about that take and since then it turns out This is easy, right? Every decent LLM can produce HTML and JavaScript that does something useful. So we've actually got this alternative way of interacting where they can respond to your prompt with an interactive custom interface that you can work with.[00:44:54] Simon: People haven't quite wired those back up again. Like, ideally, I'd want the LLM ask me a [00:45:00] question where it builds me a custom little UI, For that question, and then it gets to see how I interacted with that. I don't know why, but that's like just such a small step from where we are right now. But that feels like such an obvious next step.[00:45:12] Simon: Like an LLM, why should it, why should you just be communicating with, with text when it can build interfaces on the fly that let you select a point on a map or or move like sliders up and down. It's gonna create knobs and dials. I keep saying knobs and dials. right. We can do that. And the LLMs can build, and Claude artifacts will build you a knobs and dials interface.[00:45:34] Simon: But at the moment they haven't closed the loop. When you twiddle those knobs, Claude doesn't see what you were doing. They're going to close that loop. I'm, I'm shocked that they haven't done it yet. So yeah, I think there's so much scope for innovation and there's so much scope for doing interesting stuff with that model where the LLM, anything you can represent in SVG, which is almost everything, can now be part of that ongoing conversation.[00:45:59] swyx (2): Yeah, [00:46:00] I would say the best executed version of this I've seen so far is Bolt where you can literally type in, make a Spotify clone, make an Airbnb clone, and it actually just does that for you zero shot with a nice design.[00:46:14] Simon: There's a benchmark for that now. The LMRena people now have a benchmark that is zero shot app, app generation, because all of the models can do it.[00:46:22] Simon: Like it's, it's, I've started figuring out. I'm building my own version of this for my own project, because I think within six months. I think it'll just be an expected feature. Like if you have a web application, why don't you have a thing where, oh, look, the, you can add a custom, like, so for my dataset data exploration project, I want you to be able to do things like conjure up a dashboard, just via a prompt.[00:46:43] Simon: You say, oh, I need a pie chart and a bar chart and put them next to each other, and then have a form where submitting the form inserts a row into my database table. And this is all suddenly feasible. It's, it's, it's not even particularly difficult to do, which is great. Utterly bizarre that these things are now easy.[00:47:00][00:47:00] swyx (2): I think for a general audience, that is what I would highlight, that software creation is becoming easier and easier. Gemini is now available in Gmail and Google Sheets. I don't write my own Google Sheets formulas anymore, I just tell Gemini to do it. And so I think those are, I almost wanted to basically somewhat disagree with, with your assertion that LMS got harder to use.[00:47:22] swyx (2): Like, yes, we, we expose more capabilities, but they're, they're in minor forms, like using canvas, like web search in, in in chat GPT and like Gemini being in, in Excel sheets or in Google sheets, like, yeah, we're getting, no,[00:47:37] Simon: no, no, no. Those are the things that make it harder, because the problem is that for each of those features, they're amazing.[00:47:43] Simon: If you understand the edges of the feature, if you're like, okay, so in Google, Gemini, Excel formulas, I can get it to do a certain amount of things, but I can't get it to go and read a web. You probably can't get it to read a webpage, right? But you know, there are, there are things that it can do and things that it can't do, which are completely undocumented.[00:47:58] Simon: If you ask it what it [00:48:00] can and can't do, they're terrible at answering questions about that. So like my favorite example is Claude artifacts. You can't build a Claude artifact that can hit an API somewhere else. Because the cause headers on that iframe prevents accessing anything outside of CDNJS. So, good luck learning cause headers as an end user in order to understand why Like, I've seen people saying, oh, this is rubbish.[00:48:26] Simon: I tried building an artifact that would run a prompt and it couldn't because Claude didn't expose an API with cause headers that all of this stuff is so weird and complicated. And yeah, like that, that, the more that with the more tools we add, the more expertise you need to really, To understand the full scope of what you can do.[00:48:44] Simon: And so it's, it's, I wouldn't say it's, it's, it's, it's like, the question really comes down to what does it take to understand the full extent of what's possible? And honestly, that, that's just getting more and more involved over time.[00:48:58] Local LLMs: A Growing Interest[00:48:58] swyx (2): I have one more topic that I, I [00:49:00] think you, you're kind of a champion of and we've touched on it a little bit, which is local LLMs.[00:49:05] swyx (2): And running AI applications on your desktop, I feel like you are an early adopter of many, many things.[00:49:12] Simon: I had an interesting experience with that over the past year. Six months ago, I almost completely lost interest. And the reason is that six months ago, the best local models you could run, There was no point in using them at all, because the best hosted models were so much better.[00:49:26] Simon: Like, there was no point at which I'd choose to run a model on my laptop if I had API access to Cloud 3. 5 SONNET. They just, they weren't even comparable. And that changed, basically, in the past three months, as the local models had this step changing capability, where now I can run some of these local models, and they're not as good as Cloud 3.[00:49:45] Simon: 5 SONNET, but they're not so far away that It's not worth me even using them. The other, the, the, the, the continuing problem is I've only got 64 gigabytes of RAM, and if you run, like, LLAMA370B, it's not going to work. Most of my RAM is gone. So now I have to shut down my Firefox tabs [00:50:00] and, and my Chrome and my VS Code windows in order to run it.[00:50:03] Simon: But it's got me interested again. Like, like the, the efficiency improvements are such that now, if you were to like stick me on a desert island with my laptop, I'd be very productive using those local models. And that's, that's pretty exciting. And if those trends continue, and also, like, I think my next laptop, if when I buy one is going to have twice the amount of RAM, At which point, maybe I can run the, almost the top tier, like open weights models and still be able to use it as a computer as well.[00:50:32] Simon: NVIDIA just announced their 3, 000 128 gigabyte monstrosity. That's pretty good price. You know, that's that's, if you're going to buy it,[00:50:42] swyx (2): custom OS and all.[00:50:46] Simon: If I get a job, if I, if, if, if I have enough of an income that I can justify blowing $3,000 on it, then yes.[00:50:52] swyx (2): Okay, let's do a GoFundMe to get Simon one it.[00:50:54] swyx (2): Come on. You know, you can get a job anytime you want. Is this, this is just purely discretionary .[00:50:59] Simon: I want, [00:51:00] I want a job that pays me to do exactly what I'm doing already and doesn't tell me what else to do. That's, thats the challenge.[00:51:06] swyx (2): I think Ethan Molik does pretty well. Whatever, whatever it is he's doing.[00:51:11] swyx (2): But yeah, basically I was trying to bring in also, you know, not just local models, but Apple intelligence is on every Mac machine. You're, you're, you seem skeptical. It's rubbish.[00:51:21] Simon: Apple intelligence is so bad. It's like, it does one thing well.[00:51:25] swyx (2): Oh yeah, what's that? It summarizes notifications. And sometimes it's humorous.[00:51:29] Brian: Are you sure it does that well? And also, by the way, the other, again, from a sort of a normie point of view. There's no indication from Apple of when to use it. Like, everybody upgrades their thing and it's like, okay, now you have Apple Intelligence, and you never know when to use it ever again.[00:51:47] swyx (2): Oh, yeah, you consult the Apple docs, which is MKBHD.[00:51:49] swyx (2): The[00:51:51] Simon: one thing, the one thing I'll say about Apple Intelligence is, One of the reasons it's so disappointing is that the models are just weak, but now, like, Llama 3b [00:52:00] is Such a good model in a 2 gigabyte file I think give Apple six months and hopefully they'll catch up to the state of the art on the small models And then maybe it'll start being a lot more interesting.[00:52:10] swyx (2): Yeah. Anyway, I like This was year one And and you know just like our first year of iPhone maybe maybe not that much of a hit and then year three They had the App Store so Hey I would say give it some time, and you know, I think Chrome also shipping Gemini Nano I think this year in Chrome, which means that every app, every web app will have for free access to a local model that just ships in the browser, which is kind of interesting.[00:52:38] swyx (2): And then I, I think I also wanted to just open the floor for any, like, you know, any of us what are the apps that, you know, AI applications that we've adopted that have, that we really recommend because these are all, you know, apps that are running on our browser that like, or apps that are running locally that we should be, that, that other people should be trying.[00:52:55] swyx (2): Right? Like, I, I feel like that's, that's one always one thing that is helpful at the start of the [00:53:00] year.[00:53:00] Simon: Okay. So for running local models. My top picks, firstly, on the iPhone, there's this thing called MLC Chat, which works, and it's easy to install, and it runs Llama 3B, and it's so much fun. Like, it's not necessarily a capable enough novel that I use it for real things, but my party trick right now is I get my phone to write a Netflix Christmas movie plot outline where, like, a bunch of Jeweller falls in love with the King of Sweden or whatever.[00:53:25] Simon: And it does a good job and it comes up with pun names for the movies. And that's, that's deeply entertaining. On my laptop, most recently, I've been getting heavy into, into Olama because the Olama team are very, very good at finding the good models and patching them up and making them work well. It gives you an API.[00:53:42] Simon: My little LLM command line tool that has a plugin that talks to Olama, which works really well. So that's my, my Olama is. I think the easiest on ramp to to running models locally, if you want a nice user interface, LMStudio is, I think, the best user interface [00:54:00] thing at that. It's not open source. It's good.[00:54:02] Simon: It's worth playing with. The other one that I've been trying with recently, there's a thing called, what's it called? Open web UI or something. Yeah. The UI is fantastic. It, if you've got Olama running and you fire this thing up, it spots Olama and it gives you an interface onto your Olama models. And that's really nicely done.[00:54:19] Simon: That's that, that, that, that's, that's my current favorite, like open source UI for these things. But yeah, so there's lots of good options. You do need a lot of disk space. Like the, the, the models are, the, the best, the, the models start at two gigabytes for like the 3B models that are actually worth playing with.[00:54:35] Simon: The, the really impressive ones tend to be in the sort of 20 to 30 gigabyte range in my experience.[00:54:40] swyx (2): Yeah, I think my, my struggle here is I'm not that much of a absolutist in terms of running things locally. Like I'm happy to call an API. Same here. I do it to play.[00:54:53] Simon: It's my research interest, yeah. When people[00:54:55] swyx (2): get so excited[00:54:56] Brian: Answer your own question.[00:54:59] swyx (2): Like, give us [00:55:00] more apps that you wanna Yeah, sometimes it's like, it's just nice to recommend apps. So, I use SuperWhisperer now. I tried WhisperFlow, didn't really work for me. SuperWhisperer is one of them, which basically replaces typing. Like, you should just type. Talk, most of the time, especially if you're doing anything long form.[00:55:19] swyx (2): You hold, I hold down caps lock and I, and I talk. And then when I'm done, I lift it up and it uses, it doesn't, it's not just about writing down your transcripts because I make ums and ahs all the time. I restate myself, myself all the time, but it uses GPT 4 to rewrite. And that's what these guys are doing.[00:55:33] swyx (2): They're all doing some form of state of the art ASR, automatic speech recognition, and then, and then and LLM to rewrite. And then I think I would also recommend. For people to check out Rosebud for journaling. I think AI for mental health is quite unexplored and it's not because we are trying to build AI therapists.[00:55:51] swyx (2): I think the therapists really hate that. You'll, you'll never be on the level of therapist that, that gets back to the human[00:55:57] Brian: thing that we were discussing, you know, on, on, [00:56:00] on some level. There are certain things and disciplines that require the human touch and that might be sure.[00:56:05] swyx (2): But the human touch cost me 300 an hour, right?[00:56:09] swyx (2): And then this thing's, this thing's 3 a month, you know. So there's a, there's a spectrum of people for, for whom that will work. And I think it's, it's cheap now to try all these things.[00:56:21] Simon: I'm going to throw in a quick recommendation for an app. Mac Whisper is my favorite desktop app. I love that thing.[00:56:29] Simon: It runs Whisper, and you can do things like you can paste in the URL to a YouTube video and it'll pull the audio and give you a transcript. So, that's how I watch YouTube now, is I slap it into Mac Whisper, and then I hit copy and paste into Claude, and then I use the Claude web app to do things. But Mac Whisper, it works with mp3 files.[00:56:46] Simon: Every time I'm on a podcast, I dump the mp3 into Mac Whisper, then I dump the transcript into Claude and say, And What should I put in the show notes? And it spits out a bullet point list where it says, Oh, you mentioned, like, data set that you should link to that, that kind of thing. [00:57:00] Stuff like that, that's Mac Whisperer, I use it several times a day, to be honest.[00:57:03] Simon: Like, it's, it's, it's great. Yeah.[00:57:05] Brian: I'm actually, I'm going to say one that is incredibly super basic, and again, coming back to just my workflow, but we are currently recording this on Riverside. Riverside is a great tool for recording video, audio things like we're doing right now, but I always use this as an example to folks when they're like, well, how, what will AI do for me when I first started using Riverside, like we're recording three different channels right now.[00:57:29] Brian: Right. You guys are recording locally, so there's three audio files, three video files. And then, when I first started using Riverside, you had to pump three tracks into Adobe and then edit. Okay, now we focus on Simon, now we focus on Swyx, now we focus on Brian, now we do all three. And then one day, a tool popped up that says hit this button, and it's smart edit.[00:57:52] Brian: And then, the AI determines, okay, Simon has been talking for 30 minutes, so go to the full shot of him. [00:58:00] And Brian is now talking, or there's overtalk, so let's have all three talking heads. With one button, for anything I posted, it saved me Three or four hours worth of work. That, to me, is like, again, if normies are listening[00:58:14] Simon: Riverside has that feature now.[00:58:15] Brian: Yeah.[00:58:15] swyx (2): Yeah. Yeah.[00:58:17] Simon: Damn. I don't use it. Oh, that[00:58:18] swyx (2): sounds fantastic. I still use a human editor.[00:58:21] Brian: The day it came out, I was running around the house, telling my wife, telling anyone that would listen, you don't know, I just saved three hours because they had a new feature. Like, that's That's exciting. Brian's[00:58:32] swyx (2): basically crying with joy right now.[00:58:35] Brian: Alright let's, let's try to bring this to a landing a little bit. Simon, I have about maybe two or three more. We can do these rapid fire. Cool. One of my shows, one of the things of my show is, it's sort of like Silicon Valley writ large, so it's sort of like the horse race of who's up and who's down or whatever.[00:58:52] Brian: To the degree that you're interested in pontificating on this, OpenAI is a company in 2025. Do you [00:59:00] see challenges coming? Are you bearish, bullish? I almost, I'm doing a CNBC sort of thing, but like, how do you feel about OpenAI this year?[00:59:06] Simon: I think, I think they're in a bit of trouble. They seem to have lost a lot of talent.[00:59:10] Simon: Like, they're losing, and they don't have that, if it wasn't for O3, they'd be in massive trouble, because they'd have lost that, like, top of the pile thing. I think O3 clawed them back up again, but one of the big stories of 2024 is OpenAI started as the clear leader. And now, Google Gemini is really good, like, Google Gemini had an amazing year.[00:59:28] Simon: Anthropic Claude, Claude 3. 5 Sonnet is still my personal favorite model. And that feels notable, like, like, OpenAI went from, like, nobody would argue they were not the, the leader in all of this stuff a year ago, and today, They're still doing great, but they're not, like, as far ahead as they were.[00:59:47] Brian: Next question, and maybe this couldn't be as rapid fire, but I loved, finally, from your piece, the idea that LLMs need better criticism, which I'd love you to expand on, because as I sort of straddle this world of tech journalism and [01:00:00] creator and investor and all that stuff I thought that you had a really interesting thing to say about how, and we even alluded to this about, like, Hollywood being against it, like, Better criticism in the sense that, as I took it, everybody is sort of, they've got their hackles up, they're trying to defend their livelihoods and things like that.[01:00:19] Brian: But it's either, this is gonna destroy my job and destroy the world, or, like, I'm, sorry, I'm again leading the witness. What did you mean by LLMs need better criticism?[01:00:30] Simon: So this is a frustration I have, that I, like, if I read a discussion thread somewhere about, on this topic, I can predict exactly what everyone's going to say.[01:00:38] Simon: People talk about the environmental impact, they talk about the plagiarism of the training data, the unlicensed training data. They'll, there's often this sort of, oh, and these things are completely useless thing. That's the one that I will push back against. The other things are true, right? The, the idea that LLMs are just completely useless, that the, the argument I always make there is, they are Very useful, if you understand how to use them, which is distinctly [01:01:00] unintuitive.[01:01:00] Simon: Like, you have to learn how to deal with something that will just wildly hallucinate and make things up, and all of those kinds of things. If you can learn how to, what they're good at and what they're bad at, I use them dozens of times a day, and I get enormous value out of them. So I'll push back on people who say, no, they're just useless.[01:01:16] Simon: But the other things, you know, the environmental impact of the, the way the training data works, I feel like the training data one's interesting, because It's probably legal under fair use, but it's clearly unfair if somebody takes your work without your permission and trains a model which then competes with you in the marketplace.[01:01:33] Simon: Like, like, legal or not, that, that, that's, that's, I, I understand why people are upset about that, that, that's a reasonable thing to be upset by. So What I want, and I also feel like the impact that this stuff can have on society, especially as it starts undermining all sorts of jobs that we never thought were going to be undermined by technology.[01:01:50] Simon: Like, who thought it would come for artists and lawyers first, right? That's bizarre. We need to have really high quality conversations where we help people figure out what works, what doesn't [01:02:00] work. We need people to be able to make good decisions about what to do with their careers to embrace this stuff and all of that sort of stuff.[01:02:06] Simon: And if we just get distracted by saying, yeah, but it's, it's, it's useless plagiarism driven, like environmental vent, vently contrast catastrophic. Even though those things represent quite a lot of truth, I don't think that that's a useful message to, to lead with. Like, I want to be having the much more interesting high level conversations.[01:02:24] Simon: Oh, okay. Well, if there are negatives, how do we, what do we do to counter those negatives? If there are positives, how do we encourage those? How do we help people make good decisions about how to use this technology?[01:02:36] swyx (2): I, I think, I, where I see this the most is for people who are kind of very in internal, like sort of you and I are immersed in this every single day, so we're frankly tired of the same debates being recycled again and again.[01:02:50] swyx (2): I think what might be more useful or, you know, More impactful is the level at which it starts to hit regulation. Last year, we had a couple [01:03:00] of very notable attempts at the White House level and in the California level to regulate AI, and those did not come to pass. But at some point, these criticisms bubble up to law, to matters of national security or national Science in progress.[01:03:17] swyx (2): And I, like, I feel like there needs to be more information or enlightenment there, maybe? If only because it tends to be that they're very trailing. Like the, you know, my favorite example to pick on, which is very unfair of me, but whatever you know, the, the California SB 1047 Act tried to cap compute at 10 to the power 25.[01:03:38] swyx (2): So that's a deep sink. Exactly. Well, it also is exactly at the point at which we pivoted from training GPT 5 to O1, where there is no longer scaling pre trained compute. What I'm saying is like, we're always trying to regulate the last war, and I don't think that works in a field that is basically 8 years old.[01:04:00][01:04:00] Simon: I think I've got, there are two, there are two areas of regulation I'm super interested in that, that, that one of them is I do think that regulating the way these things are used can work. The big example is I don't want somebody's insurance claim denied by a black box LLM where nobody can explain what it did.[01:04:16] Simon: Like that just feels Oh, we have laws for[01:04:17] Speaker 4: that. Exactly.[01:04:18] Simon: This is like gridlining. Well Yeah, take those laws, reinforce them, update them for modern capabilities. And then the other one there's some really interesting stuff around privacy. Like we've got this huge problem right now where People will refuse to use any of these tools because they don't trust that the things they say to it won't be trained on and then exposed to other people.[01:04:37] Simon: And there are lots of terms and conditions that you can read through and try and navigate around. I would love there to be just really straightforward laws that people understand where They know that it's not going to train on their input because there's a law that says under these circumstances that that can't happen.[01:04:52] Simon: Like that sort of stuff, like, like, it's basically taking our existing privacy laws and giving them a few more teeth and just reinforcing them without [01:05:00] introducing cookie banners a la the European Union, right? There's, these things are always very, it's very risky to try and get this stuff right because you can have all sorts of bad results if you don't design them correctly, but that, that's, there's space for that, I think.[01:05:15] Brian: Yeah, I, when I read that piece, and then when you just said you know Swyx said we, we're in the weeds on this every single day, so we're tired of hearing these arguments. It reminds me of folks that are always into politics, and then they're like, They're mad at the people that don't care about politics until it's an election year.[01:05:34] Brian: And then they're like, well, you're a low information voter because all you know is that the factory in your town got shut down or there's inflation or whatever. And so you vote one way or the other, but you haven't been paying attention. But that's kind of the point. So, what I'm trying to say is that you shouldn't expect normal people to pay attention, except for the fact that, oh, this might lose me my job.[01:05:52] Brian: So you can't, you can't blame them for being, I don't know, reactionary is the word, or emotional. But, [01:06:00] right if you're in the weeds, it's harder to, to keep up. Everybody informed, and this is gonna touch everybody. So I dunno. Okay, so this is the very last one. And then, and then we can wrap and, and do plugs and everything.[01:06:12] Brian: But Simon, this is for you. It was kind of alluded to a little bit, and you might not have one, but if there's something this year that an a generalist like me is not aware that is coming down the pike that you think is gonna be big in the AI space. And maybe Shawn, if you've got one too what do you think it would be?[01:06:31] Simon: I think for most people who haven't been paying attention, we know these things already. We know that the models are now almost free to run things against. The the fact that you can now do video, like stream video to a model, the one that I've not played with nearly as much, but the thing where you can share your entire screen with a model and get feedback there, that's going to be really useful.[01:06:49] Simon: Like that's, Again, the privacy side of things really matters though. I do not want some model just training on everything that it sees on my screen, but no, there's that, that I feel like, like, the [01:07:00] stuff that is now possible as of a few months ago is, is, that's enough. I don't need anything new. That's going to keep me busy all year.[01:07:07] swyx (2): Swyx are you going? Simon's always too content, and then he sees the next thing and he's like, Oh yeah, that's great too. Okay, I love trying to be contrarian by saying, What does everyone hate right now?[01:07:22] AI Wearables: The Next Big Thing[01:07:22] swyx (2): Remember this time last year, we just had CES, Rabbit R1, we had the humane, Wearables, wearables, yep.[01:07:29] swyx (2): Those are completely in the gutter, no one will touch them, they're toxic nuclear waste. Okay, this year is the year of wearables.[01:07:36] Brian: Yep, yep. I agree with you. By the way, that cycle, that cycle always works out where, like, you go to a CES and it's everything, hype, hype, hype, hype, and then three years later it becomes the thing, unless it's 3D TVs, in which case that was a mistake anyway.[01:07:52] Brian: But yeah.[01:07:53] Simon: Transparent TVs are the big thing for the last couple of years. What the hell?[01:07:56] swyx (2): Yeah you know, so I think Simon may have got one of these, [01:08:00] but there are a lot of people working on AI wearables here in SF. They are surprisingly cheap, surprisingly capable and with decent battery life, and they do useful things.[01:08:09] swyx (2): We have to work out the privacy aspect, of course. But people like Limitless which used to be called re privacy. I think they're shipping one of these wearables that based on your voice only records your voice. So you opted. Interesting. Right. Right. And so you can have perfect memory if you want.[01:08:26] swyx (2): You can have perfect memory at work. Your employer can buy these for you that only, it only applies at work and it's fine. It's, it's just a meeting aid. Lots of people use granola or some kind of fireflies or like some of these meeting recorders only for, for meetings. Online meetings. But what about in person meetings?[01:08:41] swyx (2): What about conversations and locations? That you've been? And some of that should be a choice. Right now you have zero choice you, and I think these wearables will enable some of that. And it's, it's up to us as a society to determine what's Acceptable and what's not. I really like these gray areas where we still don't know [01:09:00] yet.[01:09:00] swyx (2): People, whenever I tell people about this, they're like, I don't know, like, I'm sure I guess it's like, as though you have perfect memory. But some people have better memory than others. Like, Where's the light?[01:09:12] Brian: And there will be a lot more of these. I would add to that because Swyx, as you know, because you listen to my show the idea that AI has taken the smart glasses and completely changed everyone's mind about that as a product category and form factor.[01:09:28] Brian: And I should say this. From things that I've been looking at investing in wait till you see what they can add on to earbuds. Like, like the earbuds in your ear can do a lot more things than they're doing now and then you combine that with smart glasses, And you combine that with an LLM that you can access, maybe with a a phone as like the, the mothership.[01:09:48] Brian: There's some interesting things. The CES next year is gonna be crazy if you think wearables are crazy. AI wearables are a thing. Anyway, this year they were not a thing.[01:09:57] swyx (2): There[01:09:57] Brian: were[01:09:57] swyx (2): very much no wearables this[01:09:59] Simon: [01:10:00] year. This one's interesting as well, because the thing that makes these interesting is multimodal, like audio input, video input, image input, which a year ago was hardly a thing, and now it's dirt cheap.[01:10:11] Simon: So yeah, we're 12 months ago to build the software behind this stuff.[01:10:16] Brian: Yeah, all right.[01:10:16] Wrapping Up and Final Thoughts[01:10:16] Brian: Let's let's let's bring this to a landing. Swyx, go first. Tell everybody about obviously your podcast, which hopefully we're simulcasting, but also your conferences, events, everything.[01:10:30] swyx (2): Sure, yeah, you can find my work on latent.[01:10:33] swyx (2): space, it's the AI engineer podcast much more sort of focused on serving engineers and developers than the general audience, but you know, feel free to dive in to the deep end with us, and we are also hosting a conference in New York in February. The AI engineers summit where we gather people and this one is entirely focused on agents.[01:10:54] swyx (2): As much as you know, people like to make fun of the idea that every year is the year of agents at work I think people at [01:11:00] least want to gather to figure out what are the open problems to solve. And so these are the These are the community of builders that get together, they show their latest work like, like I have Instacart coming to show how they use agents for their recommendation system and their, their sort of background jobs and internal jobs and we have a whole bunch of like sort of financial tech company FinTech or finance companies also showing off their work that I cannot name yet, but it'll be lots of fun.[01:11:23] swyx (2): We, we, we do high quality events that sometimes people like Simon speak at.[01:11:28] Brian: And that right as I said, or I think I said online or on air that I saw Simon speak at one of your events last year. Wait Swyx, just say again, it's in February. It's in New York City. I'm going to be there if that matters to anybody, if that's an attraction, but what's the dates on that and how to apply.[01:11:43] swyx (2): I'm horrible at this. February 20th is the leadership day for management, like VPs of AI CTOs. And 21st is the engineer day, the individual contributors, hands on keyboard people. And that's when I'll have the big labs. So DeepMind, Anthropic, Meta, [01:12:00] OpenAI, all coming to share their agents work. And then we'll have some new launches as well that you haven't heard of.[01:12:06] Brian: And to sign up to attend what website can I go to? Yeah, it's apply. ai. engineer. All right, Simon, I'm gonna, I'm gonna hold hand you, or handhold you even more. Your weblog is simonwillison. net, but what else would you like us to know or, or go find out about what you're doing?[01:12:22] Simon: Yeah, I was gonna say my blog my other, my, my day, my day job, I call it a job is I work on open source tools for data journalism.[01:12:29] Simon: That's my project. Dataset, spelt like the word cassette, but data dataset. io. And that's beginning to grow some interesting AI tools. Like originally it was all about data publishing and exploration and analysis. And now I'm like, okay, well, what plugins for that can I build that you use, let you use LLMs to craft queries and build dashboards and all sorts of bits and pieces like that.[01:12:50] Simon: So I'm expecting to have some really interesting product features along those lines in the, in the next few months.[01:12:56] Brian: And I'll end by saying, if anyone's listening to this on SWYX's [01:13:00] show I do the TechMeme Ride Home every single weekday, 15 minute long tech news podcast. Look up Ride Home on your podcast app of choice.[01:13:08] Brian: TechMeme Ride Home. Gentlemen, thank you for your time. Thank you. This was fantastic. What a great way to start the year for, for this show.[01:13:16] Simon: Cool. Thanks a lot for having me. This has been really fun. Yeah, thanks for having us. Honored to be on. Get full access to Latent.Space at www.latent.space/subscribe

Sunday Pick: Design Matters | Colin Greenwood

From TED Talks Daily

Each Sunday, TED shares an episode of another podcast we think you'll love, handpicked for you… by us. Since 2003, Radiohead’s bassist, Colin Greenwood, has taken his camera to the studio and on stage to document the rise of one of the world’s most cherished bands. In this episode of Design Matters with Debbie Millman, Colin discusses his legendary musical career and his beautiful new book, How to Disappear, capturing intimate photographs of his bandmates at work.Listen to Design Matters with Debbie Millman wherever you get your podcasts.For a chance to give your own TED Talk, fill out the Idea Search Application: ted.com/ideasearch.Interested in learning more about upcoming TED events? Follow these links:TEDNext: ted.com/futureyouTEDSports: ted.com/sportsTEDAI Vienna: ted.com/ai-vienna Hosted on Acast. See acast.com/privacy for more information.

The biggest global risks for 2025 | Ian Bremmer

From TED Talks Daily

2025 ushers in one of the most dangerous periods in world history — on par with the 1930s and early Cold War, says Ian Bremmer, president and founder of Eurasia Group and GZERO Media. Highlighting the top geopolitical risks for the year ahead, Bremmer explores the impact of Donald Trump’s return to power in the US, the breakdown of the US-China relationship, the consequences of a rogue Russia, the future of unchecked AI development and more, plus some bright spots amid these unprecedented challenges. (This interview, hosted by TED’s Helen Walters, was recorded on January 6, 2025.)For a chance to give your own TED Talk, fill out the Idea Search Application: ted.com/ideasearch.Interested in learning more about upcoming TED events? Follow these links:TEDNext: ted.com/futureyouTEDSports: ted.com/sportsTEDAI Vienna: ted.com/ai-vienna Hosted on Acast. See acast.com/privacy for more information.

#888 - David Sutcliffe - How To Stop Betraying Yourself & Be More Authentic

From Modern Wisdom

David Sutcliffe is a former actor and life coach. Balancing self-compassion with self-discipline can be challenging. On one hand, kindness towards yourself fosters growth and resilience, but on the other, pushing yourself can maintain drive and ambition. How can we navigate this balance to treat ourselves better while staying motivated? Expect to learn the role of authenticity in everyday life, what the cost is of betraying yourself, why self compassion is so hard, why people struggle to access their feelings, why its tough to be present all of the time, how to become more powerful to hold presence, and much more… Sponsors: See discounts for all the products I use and recommend: https://chriswillx.com/deals Get the best bloodwork analysis in America and bypass Function’s 400,000-person waitlist at https://functionhealth.com/modernwisdom Join Whoop’s January Jumpstart Challenge and get your first month for free at https://join.whoop.com/modernwisdom Get 5 Free Travel Packs, Free Liquid Vitamin D, and more from AG1 at https://drinkag1.com/modernwisdom Extra Stuff: Get my free reading list of 100 books to read before you die: https://chriswillx.com/books Try my productivity energy drink Neutonic: https://neutonic.com/modernwisdom Episodes You Might Enjoy: #577 - David Goggins - This Is How To Master Your Life: https://tinyurl.com/43hv6y59 #712 - Dr Jordan Peterson - How To Destroy Your Negative Beliefs: https://tinyurl.com/2rtz7avf #700 - Dr Andrew Huberman - The Secret Tools To Hack Your Brain: https://tinyurl.com/3ccn5vkp - Get In Touch: Instagram: https://www.instagram.com/chriswillx Twitter: https://www.twitter.com/chriswillx YouTube: https://www.youtube.com/modernwisdompodcast Email: https://chriswillx.com/contact - Learn more about your ad choices. Visit megaphone.fm/adchoices

LA's Wildfire Disaster, Zuck Flips on Free Speech, Why Trump Wants Greenland

From All-In with Chamath, Jason, Sacks & Friedberg

(0:00) The Besties welcome Cyan Banister! (9:16) Reacting to the LA wildfires: broken incentives, leadership failures, lessons learned (36:51) Insurance issues, rebuilding headwinds, reclaiming the government (59:44) Zuck goes full free speech, fires third-party fact-checkers, opts for Community Notes model (1:20:19) Nvidia goes consumer at CES: market cap impact, most interesting vertical (1:34:49) Why Trump wants Greenland (1:40:05) Conspiracy Corner: Who built the pyramids? Follow the Besties: https://x.com/chamath https://x.com/Jason https://x.com/DavidSacks https://x.com/friedberg Follow Cyan Banister: https://x.com/cyantist Follow on X: https://x.com/theallinpod Follow on Instagram: https://www.instagram.com/theallinpod Follow on TikTok: https://www.tiktok.com/@theallinpod Follow on LinkedIn: https://www.linkedin.com/company/allinpod Intro Music Credit: https://rb.gy/tppkzl https://x.com/yung_spielburg Intro Video Credit: https://x.com/TheZachEffect Referenced in the show: https://www.youtube.com/watch?v=_SQ_myzmV_Q https://www.cnrfc.noaa.gov/awipsProducts/RNORR4RSA.php https://x.com/JonVigliotti/status/1877020919475884110 https://x.com/FearedBuck/status/1877355797245514085 https://www.youtube.com/watch?v=vKJ5WeBc7Us https://x.com/CrazyyHub/status/1823574726738092402 https://www.latimes.com/visuals/photography/la-me-fw-archives-the-1961-bel-air-brush-fire-20170419-story.html https://www.rainmaker.com https://www.ksbw.com/article/california-fire-evacuation-maps/63382651 https://x.com/shaunmmaguire/status/1877366727547433382 https://x.com/WorldTimesWT/status/1876887200526111017 https://x.com/ericabbenante/status/1877207054105886836 https://x.com/laurapowellesq/status/1877143625588682940 https://x.com/jeremykauffman/status/1877128641802285064 https://x.com/deb8rr/status/1877539354802876576 https://x.com/Jason/status/1877183155821494513 https://about.fb.com/news/2025/01/meta-more-speech-fewer-mistakes https://www.americanrhetoric.com/speeches/PDFFiles/Mark-Zuckerberg-Letter-on-Govt-Censorship.pdf https://x.com/townhallcom/status/1876684277787873397 https://www.wsj.com/tech/ai/nvidia-ceo-pitches-robotics-cars-as-growth-areas-to-consumer-electronics-audience-68905f2d https://www.nvidia.com/en-us/project-digits https://polymarket.com/markets/creators/all-in  

The case for Fed independence in the Nixon tapes

From Planet Money

You know Watergate, but do you know Fedgate? The more subtle scandal with more monetary policy and, arguably, much higher stakes.In today's episode, we listen back through the Nixon White House tapes to search for evidence of an alarming chapter in American economic history: When the President of the United States seemingly flouted the norms of Fed Independence in order to pressure the Chair of the Federal Reserve Board into decisions that were economically bad in the long run but good for Nixon's upcoming election.The tale of Nixon and his Fed Chair, Arthur Burns, has become the cautionary tale about why Fed Independence matters. That choice may have started a decade of catastrophic inflation. And Burns' story is now being invoked as President-elect Trump has explicitly said he'd like more control over the Federal Reserve.Help support Planet Money and hear our bonus episodes by subscribing to Planet Money+ in Apple Podcasts or at plus.npr.org/planetmoney.Learn more about sponsor message choices: podcastchoices.com/adchoicesNPR Privacy Policy

The TikTok Ban Goes to the Supreme Court

From The Journal

Today, the U.S. Supreme Court heard arguments challenging the federal law that requires TikTok, which is owned by Chinese company ByteDance, to either shut down or find a new owner. WSJ’s Jess Bravin breaks down the arguments from each side. Further Listening: -How TikTok Became The World’s Favorite App  -A TikTok Star Wrestles With the App's Possible Ban  -What's Up With All the TikTok Bans?  -House Passes Bill to Ban TikTok  Further Reading: -Supreme Court Questions TikTok’s Arguments Against Ban  -How TikTok Was Blindsided by U.S. Bill That Could Ban It  Learn more about your ad choices. Visit megaphone.fm/adchoices

Beating Google at Search with Neural PageRank and $5M of H200s — with Will Bryk of Exa.ai

From Latent Space: The AI Engineer Podcast

Applications close Monday for the NYC AI Engineer Summit focusing on AI Leadership and Agent Engineering! If you applied, invites should be rolling out shortly.The search landscape is experiencing a fundamental shift. Google built a >$2T company with the “10 blue links” experience, driven by PageRank as the core innovation for ranking. This was a big improvement from the previous directory-based experiences of AltaVista and Yahoo. Almost 4 decades later, Google is now stuck in this links-based experience, especially from a business model perspective. This legacy architecture creates fundamental constraints:* Must return results in ~400 milliseconds* Required to maintain comprehensive web coverage* Tied to keyword-based matching algorithms* Cost structures optimized for traditional indexingAs we move from the era of links to the era of answers, the way search works is changing. You’re not showing a user links, but the goal is to provide context to an LLM. This means moving from keyword based search to more semantic understanding of the content:The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share... but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways.All of this is now powered by a $5M cluster with 144 H200s:This architectural choice enables entirely new search capabilities:* Comprehensive result sets instead of approximations* Deep semantic understanding of queries* Ability to process complex, natural language requestsAs search becomes more complex, time to results becomes a variable:People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned... But what if searches can take like a minute or 10 minutes or a whole day, what can you then do?Unlike traditional search engines' fixed-cost indexing, Exa employs a hybrid approach:* Front-loaded compute for indexing and embeddings* Variable inference costs based on query complexity* Mix of owned infrastructure ($5M H200 cluster) and cloud resourcesExa sees a lot of competition from products like Perplexity and ChatGPT Search which layer AI on top of traditional search backends, but Exa is betting that true innovation requires rethinking search from the ground up. For example, the recently launched Websets, a way to turn searches into structured output in grid format, allowing you to create lists and databases out of web pages. The company raised a $17M Series A to build towards this mission, so keep an eye out for them in 2025. Chapters* 00:00:00 Introductions* 00:01:12 ExaAI's initial pitch and concept* 00:02:33 Will's background at SpaceX and Zoox* 00:03:45 Evolution of ExaAI (formerly Metaphor Systems)* 00:05:38 Exa's link prediction technology* 00:09:20 Meaning of the name "Exa"* 00:10:36 ExaAI's new product launch and capabilities* 00:13:33 Compute budgets and variable compute products* 00:14:43 Websets as a B2B offering* 00:19:28 How do you build a search engine?* 00:22:43 What is Neural PageRank?* 00:27:58 Exa use cases * 00:35:00 Auto-prompting* 00:38:42 Building agentic search* 00:44:19 Is o1 on the path to AGI?* 00:49:59 Company culture and nap pods* 00:54:52 Economics of AI search and the future of search technologyFull YouTube TranscriptPlease like and subscribe!Show Notes* ExaAI* Web Search Product* Websets* Series A Announcement* Exa Nap Pods* Perplexity AI* Character.AITranscriptAlessio [00:00:00]: Hey, everyone. Welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:10]: Hey, and today we're in the studio with my good friend and former landlord, Will Bryk. Roommate. How you doing? Will, you're now CEO co-founder of ExaAI, used to be Metaphor Systems. What's your background, your story?Will [00:00:30]: Yeah, sure. So, yeah, I'm CEO of Exa. I've been doing it for three years. I guess I've always been interested in search, whether I knew it or not. Like, since I was a kid, I've always been interested in, like, high-quality information. And, like, you know, even in high school, wanted to improve the way we get information from news. And then in college, built a mini search engine. And then with Exa, like, you know, it's kind of like fulfilling the dream of actually being able to solve all the information needs I wanted as a kid. Yeah, I guess. I would say my entire life has kind of been rotating around this problem, which is pretty cool. Yeah.Swyx [00:00:50]: What'd you enter YC with?Will [00:00:53]: We entered YC with, uh, we are better than Google. Like, Google 2.0.Swyx [00:01:12]: What makes you say that? Like, that's so audacious to come out of the box with.Will [00:01:16]: Yeah, okay, so you have to remember the time. This was summer 2021. And, uh, GPT-3 had come out. Like, here was this magical thing that you could talk to, you could enter a whole paragraph, and it understands what you mean, understands the subtlety of your language. And then there was Google. Uh, which felt like it hadn't changed in a decade, uh, because it really hadn't. And it, like, you would give it a simple query, like, I don't know, uh, shirts without stripes, and it would give you a bunch of results for the shirts with stripes. And so, like, Google could barely understand you, and GBD3 could. And the theory was, what if you could make a search engine that actually understood you? What if you could apply the insights from LLMs to a search engine? And it's really been the same idea ever since. And we're actually a lot closer now, uh, to doing that. Yeah.Alessio [00:01:55]: Did you have any trouble making people believe? Obviously, there's the same element. I mean, YC overlap, was YC pretty AI forward, even 2021, or?Will [00:02:03]: It's nothing like it is today. But, um, uh, there were a few AI companies, but, uh, we were definitely, like, bold. And I think people, VCs generally like boldness, and we definitely had some AI background, and we had a working demo. So there was evidence that we could build something that was going to work. But yeah, I think, like, the fundamentals were there. I think people at the time were talking about how, you know, Google was failing in a lot of ways. And so there was a bit of conversation about it, but AI was not a big, big thing at the time. Yeah. Yeah.Alessio [00:02:33]: Before we jump into Exa, any fun background stories? I know you interned at SpaceX, any Elon, uh, stories? I know you were at Zoox as well, you know, kind of like robotics at Harvard. Any stuff that you saw early that you thought was going to get solved that maybe it's not solved today?Will [00:02:48]: Oh yeah. I mean, lots of things like that. Like, uh, I never really learned how to drive because I believed Elon that self-driving cars would happen. It did happen. And I take them every night to get home. But it took like 10 more years than I thought. Do you still not know how to drive? I know how to drive now. I learned it like two years ago. That would have been great to like, just, you know, Yeah, yeah, yeah. You know? Um, I was obsessed with Elon. Yeah. I mean, I worked at SpaceX because I really just wanted to work at one of his companies. And I remember they had a rule, like interns cannot touch Elon. And, um, that rule actually influenced my actions.Swyx [00:03:18]: Is it, can Elon touch interns? Ooh, like physically?Will [00:03:22]: Or like talk? Physically, physically, yeah, yeah, yeah, yeah. Okay, interesting. He's changed a lot, but, um, I mean, his companies are amazing. Um,Swyx [00:03:28]: What if you beat him at Diablo 2, Diablo 4, you know, like, Ah, maybe.Alessio [00:03:34]: I want to jump into, I know there's a lot of backstory used to be called metaphor system. So, um, and it, you've always been kind of like a prominent company, maybe at least RAI circles in the NSF.Swyx [00:03:45]: I'm actually curious how Metaphor got its initial aura. You launched with like, very little. We launched very little. Like there was, there was this like big splash image of like, this is Aurora or something. Yeah. Right. And then I was like, okay, what this thing, like the vibes are good, but I don't know what it is. And I think, I think it was much more sort of maybe consumer facing than what you are today. Would you say that's true?Will [00:04:06]: No, it's always been about building a better search algorithm, like search, like, just like the vision has always been perfect search. And if you do that, uh, we will figure out the downstream use cases later. It started on this fundamental belief that you could have perfect search over the web and we could talk about what that means. And like the initial thing we released was really just like our first search engine, like trying to get it out there. Kind of like, you know, an open source. So when OpenAI released, uh, ChachBt, like they didn't, I don't know how, how much of a game plan they had. They kind of just wanted to get something out there.Swyx [00:04:33]: Spooky research preview.Will [00:04:34]: Yeah, exactly. And it kind of morphed from a research company to a product company at that point. And I think similarly for us, like we were research, we started as a research endeavor with a, you know, clear eyes that like, if we succeed, it will be a massive business to make out of it. And that's kind of basically what happened. I think there are actually a lot of parallels to, of w between Exa and OpenAI. I often say we're the OpenAI of search. Um, because. Because we're a research company, we're a research startup that does like fundamental research into, uh, making like AGI for search in a, in a way. Uh, and then we have all these like, uh, business products that come out of that.Swyx [00:05:08]: Interesting. I want to ask a little bit more about Metaforesight and then we can go full Exa. When I first met you, which was really funny, cause like literally I stayed in your house in a very historic, uh, Hayes, Hayes Valley place. You said you were building sort of like link prediction foundation model, and I think there's still a lot of foundation model work. I mean, within Exa today, but what does that even mean? I cannot be the only person confused by that because like there's a limited vocabulary or tokens you're telling me, like the tokens are the links or, you know, like it's not, it's not clear. Yeah.Will [00:05:38]: Uh, what we meant by link prediction is that you are literally predicting, like given some texts, you're predicting the links that follow. Yes. That refers to like, it's how we describe the training procedure, which is that we find links on the web. Uh, we take the text surrounding the link. And then we predict. Which link follows you, like, uh, you know, similar to transformers where, uh, you're trying to predict the next token here, you're trying to predict the next link. And so you kind of like hide the link from the transformer. So if someone writes, you know, imagine some article where someone says, Hey, check out this really cool aerospace startup. And they, they say spacex.com afterwards, uh, we hide the spacex.com and ask the model, like what link came next. And by doing that many, many times, you know, billions of times, you could actually build a search engine out of that because then, uh, at query time at search time. Uh, you type in, uh, a query that's like really cool aerospace startup and the model will then try to predict what are the most likely links. So there's a lot of analogs to transformers, but like to actually make this work, it does require like a different architecture than, but it's transformer inspired. Yeah.Alessio [00:06:41]: What's the design decision between doing that versus extracting the link and the description and then embedding the description and then using, um, yeah. What do you need to predict the URL versus like just describing, because you're kind of do a similar thing in a way. Right. It's kind of like based on this description, it was like the closest link for it. So one thing is like predicting the link. The other approach is like I extract the link and the description, and then based on the query, I searched the closest description to it more. Yeah.Will [00:07:09]: That, that, by the way, that is, that is the link refers here to a document. It's not, I think one confusing thing is it's not, you're not actually predicting the URL, the URL itself that would require like the, the system to have memorized URLs. You're actually like getting the actual document, a more accurate name could be document prediction. I see. This was the initial like base model that Exo was trained on, but we've moved beyond that similar to like how, you know, uh, to train a really good like language model, you might start with this like self-supervised objective of predicting the next token and then, uh, just from random stuff on the web. But then you, you want to, uh, add a bunch of like synthetic data and like supervised fine tuning, um, stuff like that to make it really like controllable and robust. Yeah.Alessio [00:07:48]: Yeah. We just have flow from Lindy and, uh, their Lindy started to like hallucinate recrolling YouTube links instead of like, uh, something. Yeah. Support guide. So. Oh, interesting. Yeah.Swyx [00:07:57]: So round about January, you announced your series A and renamed to Exo. I didn't like the name at the, at the initial, but it's grown on me. I liked metaphor, but apparently people can spell metaphor. What would you say are the major components of Exo today? Right? Like, I feel like it used to be very model heavy. Then at the AI engineer conference, Shreyas gave a really good talk on the vector database that you guys have. What are the other major moving parts of Exo? Okay.Will [00:08:23]: So Exo overall is a search engine. Yeah. We're trying to make it like a perfect search engine. And to do that, you have to build lots of, and we're doing it from scratch, right? So to do that, you have to build lots of different. The crawler. Yeah. You have to crawl a bunch of the web. First of all, you have to find the URLs to crawl. Uh, it's connected to the crawler, but yeah, you find URLs, you crawl those URLs. Then you have to process them with some, you know, it could be an embedding model. It could be something more complex, but you need to take, you know, or like, you know, in the past it was like a keyword inverted index. Like you would process all these documents you gather into some processed index, and then you have to serve that. Uh, you had high throughput at low latency. And so that, and that's like the vector database. And so it's like the crawling system, the AI processing system, and then the serving system. Those are all like, you know, teams of like hundreds, maybe thousands of people at Google. Um, but for us, it's like one or two people each typically, but yeah.Alessio [00:09:13]: Can you explain the meaning of, uh, Exo, just the story 10 to the 16th, uh, 18, 18.Will [00:09:20]: Yeah, yeah, yeah, sure. So. Exo means 10 to the 18th, which is in stark contrast to. To Google, which is 10 to the hundredth. Uh, we actually have these like awesome shirts that are like 10th to 18th is greater than 10th to the hundredth. Yeah, it's great. And it's great because it's provocative. It's like every engineer in Silicon Valley is like, what? No, it's not true. Um, like, yeah. And, uh, and then you, you ask them, okay, what does it actually mean? And like the creative ones will, will recognize it. But yeah, I mean, 10 to the 18th is better than 10 to the hundredth when it comes to search, because with search, you want like the actual list of, of things that match what you're asking for. You don't want like the whole web. You want to basically with search filter, the, like everything that humanity has ever created to exactly what you want. And so the idea is like smaller is better there. You want like the best 10th to the 18th and not the 10th to the hundredth. I'm like, one way to say this is like, you know how Google often says at the top, uh, like, you know, 30 million results found. And it's like crazy. Cause you're looking for like the first startups in San Francisco that work on hardware or something. And like, they're not 30 million results like that. What you want is like 325 results found. And those are all the results. That's what you really want with search. And that's, that's our vision. It's like, it just gives you. Perfectly what you asked for.Swyx [00:10:24]: We're recording this ahead of your launch. Uh, we haven't released, we haven't figured out the, the, the name of the launch yet, but what is the product that you're launching? I guess now that we're coinciding this podcast with. Yeah.Will [00:10:36]: So we've basically developed the next version of Exa, which is the ability to get a near perfect list of results of whatever you want. And what that means is you can make a complex query now to Exa, for example, startups working on hardware in SF, and then just get a huge list of all the things that match. And, you know, our goal is if there are 325 startups that match that we find you all of them. And this is just like, there's just like a new experience that's never existed before. It's really like, I don't know how you would go about that right now with current tools and you can apply this same type of like technology to anything. Like, let's say you want, uh, you want to find all the blog posts that talk about Alessio's podcast, um, that have come out in the past year. That is 30 million results. Yeah. Right.Will [00:11:24]: But that, I mean, that would, I'm sure that would be extremely useful to you guys. And like, I don't really know how you would get that full comprehensive list.Swyx [00:11:29]: I just like, how do you, well, there's so many questions with regards to how do you know it's complete, right? Cause you're saying there's only 30 million, 325, whatever. And then how do you do the semantic understanding that it might take, right? So working in hardware, like I might not use the words hardware. I might use the words robotics. I might use the words wearables. I might use like whatever. Yes. So yeah, just tell us more. Yeah. Yeah. Sure. Sure.Will [00:11:53]: So one aspect of this, it's a little subjective. So like certainly providing, you know, at some point we'll provide parameters to the user to like, you know, some sort of threshold to like, uh, gauge like, okay, like this is a cutoff. Like, this is actually not what I mean, because sometimes it's subjective and there needs to be a feedback loop. Like, oh, like it might give you like a few examples and you say, yeah, exactly. And so like, you're, you're kind of like creating a classifier on the fly, but like, that's ultimately how you solve the problem. So the subject, there's a subjectivity problem and then there's a comprehensiveness problem. Those are two different problems. So. Yeah. So you have the comprehensiveness problem. What you basically have to do is you have to put more compute into the query, into the search until you get the full comprehensiveness. Yeah. And I think there's an interesting point here, which is that not all queries are made equal. Some queries just like this blog post one might require scanning, like scavenging, like throughout the whole web in a way that just, just simply requires more compute. You know, at some point there's some amount of compute where you will just be comprehensive. You could imagine, for example, running GPT-4 over the internet. You could imagine running GPT-4 over the entire web and saying like, is this a blog post about Alessio's podcast, like, is this a blog post about Alessio's podcast? And then that would work, right? It would take, you know, a year, maybe cost like a million dollars, but, or many more, but, um, it would work. Uh, the point is that like, given sufficient compute, you can solve the query. And so it's really a question of like, how comprehensive do you want it given your compute budget? I think it's very similar to O1, by the way. And one way of thinking about what we built is like O1 for search, uh, because O1 is all about like, you know, some, some, some questions require more compute than others, and we'll put as much compute into the question as we need to solve it. So similarly with our search, we will put as much compute into the query in order to get comprehensiveness. Yeah.Swyx [00:13:33]: Does that mean you have like some kind of compute budget that I can specify? Yes. Yes. Okay. And like, what are the upper and lower bounds?Will [00:13:42]: Yeah, there's something we're still figuring out. I think like, like everyone is a new paradigm of like variable compute products. Yeah. How do you specify the amount of compute? Like what happens when you. Run out? Do you just like, ah, do you, can you like keep going with it? Like, do you just put in more credits to get more, um, for some, like this can get complex at like the really large compute queries. And like, one thing we do is we give you a preview of what you're going to get, and then you could then spin up like a much larger job, uh, to get like way more results. But yes, there is some compute limit, um, at, at least right now. Yeah. People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned, uh, to have search that takes 500 milliseconds. But like search engines like Google, right. No matter how complex your query to Google, it will take like, you know, roughly 400 milliseconds. But what if searches can take like a minute or 10 minutes or a whole day, what can you then do? And you can do very powerful things. Um, you know, you can imagine, you know, writing a search, going and get a cup of coffee, coming back and you have a perfect list. Like that's okay for a lot of use cases. Yeah.Alessio [00:14:43]: Yeah. I mean, the use case closest to me is venture capital, right? So, uh, no, I mean, eight years ago, I built one of the first like data driven sourcing platforms. So we were. You look at GitHub, Twitter, Product Hunt, all these things, look at interesting things, evaluate them. If you think about some jobs that people have, it's like literally just make a list. If you're like an analyst at a venture firm, your job is to make a list of interesting companies. And then you reach out to them. How do you think about being infrastructure versus like a product you could say, Hey, this is like a product to find companies. This is a product to find things versus like offering more as a blank canvas that people can build on top of. Oh, right. Right.Will [00:15:20]: Uh, we are. We are a search infrastructure company. So we want people to build, uh, on top of us, uh, build amazing products on top of us. But with this one, we try to build something that makes it really easy for users to just log in, put a few, you know, put some credits in and just get like amazing results right away and not have to wait to build some API integration. So we're kind of doing both. Uh, we, we want, we want people to integrate this into all their applications at the same time. We want to just make it really easy to use very similar again to open AI. Like they'll have, they have an API, but they also have. Like a ChatGPT interface so that you could, it's really easy to use, but you could also build it in your applications. Yeah.Alessio [00:15:56]: I'm still trying to wrap my head around a lot of the implications. So, so many businesses run on like information arbitrage, you know, like I know this thing that you don't, especially in investment and financial services. So yeah, now all of a sudden you have these tools for like, oh, actually everybody can get the same information at the same time, the same quality level as an API call. You know, it just kind of changes a lot of things. Yeah.Will [00:16:19]: I think, I think what we're grappling with here. What, what you're just thinking about is like, what is the world like if knowledge is kind of solved, if like any knowledge request you want is just like right there on your computer, it's kind of different from when intelligence is solved. There's like a good, I've written before about like a different super intelligence, super knowledge. Yeah. Like I think that the, the distinction between intelligence and knowledge is actually a pretty good one. They're definitely connected and related in all sorts of ways, but there is a distinction. You could have a world and we are going to have this world where you have like GP five level systems and beyond that could like answer any complex request. Um, unless it requires some. Like, if you say like, uh, you know, give me a list of all the PhDs in New York city who, I don't know, have thought about search before. And even though this, this super intelligence is going to be like, I can't find it on Google, right. Which is kind of crazy. Like we're literally going to have like super intelligences that are using Google. And so if Google can't find them information, there's nothing they could do. They can't find it. So, but if you also have a super knowledge system where it's like, you know, I'm calling this term super knowledge where you just get whatever knowledge you want, then you can pair with a super intelligence system. And then the super intelligence can, we'll never. Be blocked by lack of knowledge.Alessio [00:17:23]: Yeah. You told me this, uh, when we had lunch, I forget how it came out, but we were talking about AGI and whatnot. And you were like, even AGI is going to need search. Yeah.Swyx [00:17:32]: Yeah. Right. Yeah. Um, so we're actually referencing a blog post that you wrote super intelligence and super knowledge. Uh, so I would refer people to that. And this is actually a discussion we've had on the podcast a couple of times. Um, there's so much of model weights that are just memorizing facts. Some of the, some of those might be outdated. Some of them are incomplete or not. Yeah. So like you just need search. So I do wonder, like, is there a maximum language model size that will be the intelligence layer and then the rest is just search, right? Like maybe we should just always use search. And then that sort of workhorse model is just like, and it like, like, like one B or three B parameter model that just drives everything. Yes.Will [00:18:13]: I believe this is a much more optimal system to have a smaller LM. That's really just like an intelligence module. And it makes a call to a search. Tool that's way more efficient because if, okay, I mean the, the opposite of that would be like the LM is so big that can memorize the whole web. That would be like way, but you know, it's not practical at all. I don't, it's not possible to train that at least right now. And Carpathy has actually written about this, how like he could, he could see models moving more and more towards like intelligence modules using various tools. Yeah.Swyx [00:18:39]: So for listeners, that's the, that was him on the no priors podcast. And for us, we talked about this and the, on the Shin Yu and Harrison chase podcasts. I'm doing search in my head. I told you 30 million results. I forgot about our neural link integration. Self-hosted exit.Will [00:18:54]: Yeah. Yeah. No, I do see that that is a much more, much more efficient world. Yeah. I mean, you could also have GB four level systems calling search, but it's just because of the cost of inference. It's just better to have a very efficient search tool and a very efficient LM and they're built for different things. Yeah.Swyx [00:19:09]: I'm just kind of curious. Like it is still something so audacious that I don't want to elide, which is you're, you're, you're building a search engine. Where do you start? How do you, like, are there any reference papers or implementation? That would really influence your thinking, anything like that? Because I don't even know where to start apart from just crawl a bunch of s**t, but there's gotta be more insight than that.Will [00:19:28]: I mean, yeah, there's more insight, but I'm always surprised by like, if you have a group of people who are really focused on solving a problem, um, with the tools today, like there's some in, in software, like there are all sorts of creative solutions that just haven't been thought of before, particularly in the information retrieval field. Yeah. I think a lot of the techniques are just very old, frankly. Like I know how Google and Bing work and. They're just not using new methods. There are all sorts of reasons for that. Like one, like Google has to be comprehensive over the web. So they're, and they have to return in 400 milliseconds. And those two things combined means they are kind of limit and it can't cost too much. They're kind of limited in, uh, what kinds of algorithms they could even deploy at scale. So they end up using like a limited keyword based algorithm. Also like Google was built in a time where like in, you know, in 1998, where we didn't have LMS, we didn't have embeddings. And so they never thought to build those things. And so now they have this like gigantic system that is built on old technology. Yeah. And so a lot of the information retrieval field we found just like thinks in terms of that framework. Yeah. Whereas we came in as like newcomers just thinking like, okay, there here's GB three. It's magical. Obviously we're going to build search that is using that technology. And we never even thought about using keywords really ever. Uh, like we were neural all the way we're building an end to end neural search engine. And just that whole framing just makes us ask different questions, like pursue different lines of work. And there's just a lot of low hanging fruit because no one else is thinking about it. We're just on the frontier of neural search. We just are, um, for, for at web scale, um, because there's just not a lot of people thinking that way about it.Swyx [00:20:57]: Yeah. Maybe let's spell this out since, uh, we're already on this topic, elephants in the room are Perplexity and SearchGPT. That's the, I think that it's all, it's no longer called SearchGPT. I think they call it ChatGPT Search. How would you contrast your approaches to them based on what we know of how they work and yeah, just any, anything in that, in that area? Yeah.Will [00:21:15]: So these systems, there are a few of them now, uh, they basically rely on like traditional search engines like Google or Bing, and then they combine them with like LLMs at the end to, you know, output some power graphics, uh, answering your question. So they like search GPT perplexity. I think they have their own crawlers. No. So there's this important distinction between like having your own search system and like having your own cache of the web. Like for example, so you could create, you could crawl a bunch of the web. Imagine you crawl a hundred billion URLs, and then you create a key value store of like mapping from URL to the document that is technically called an index, but it's not a search algorithm. So then to actually like, when you make a query to search GPT, for example, what is it actually doing it? Let's say it's, it's, it could, it's using the Bing API, uh, getting a list of results and then it could go, it has this cache of like all the contents of those results and then could like bring in the cache, like the index cache, but it's not actually like, it's not like they've built a search engine from scratch over, you know, hundreds of billions of pages. It's like, does that distinction clear? It's like, yeah, you could have like a mapping from URL to documents, but then rely on traditional search engines to actually get the list of results because it's a very hard problem to take. It's not hard. It's not hard to use DynamoDB and, and, and map URLs to documents. It's a very hard problem to take a hundred billion or more documents and given a query, like instantly get the list of results that match. That's a much harder problem that very few entities on, in, on the planet have done. Like there's Google, there's Bing, uh, you know, there's Yandex, but you know, there are not that many companies that are, that are crazy enough to actually build their search engine from scratch when you could just use traditional search APIs.Alessio [00:22:43]: So Google had PageRank as like the big thing. Is there a LLM equivalent or like any. Stuff that you're working on that you want to highlight?Will [00:22:51]: The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share. And so if everyone is sharing some Paul Graham essay about fundraising, then like our model is more likely to predict it. So like inherent in our training objective is this, uh, a sense of like high canonicity and like high quality, but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways. That someone refers that Paul Graham, I say, while also learning how important that Paul Graham essay is. Um, so it's like, it's like PageRank on steroids kind of thing. Yeah.Alessio [00:23:26]: I think to me, that's the most interesting thing about search today, like with Google and whatnot, it's like, it's mostly like domain authority. So like if you get back playing, like if you search any AI term, you get this like SEO slop websites with like a bunch of things in them. So this is interesting, but then how do you think about more timeless maybe content? So if you think about, yeah. You know, maybe the founder mode essay, right. It gets shared by like a lot of people, but then you might have a lot of other essays that are also good, but they just don't really get a lot of traction. Even though maybe the people that share them are high quality. How do you kind of solve that thing when you don't have the people authority, so to speak of who's sharing, whether or not they're worth kind of like bumping up? Yeah.Will [00:24:10]: I mean, you do have a lot of control over the training data, so you could like make sure that the training data contains like high quality sources so that, okay. Like if you, if you're. Training data, I mean, it's very similar to like language, language model training. Like if you train on like a bunch of crap, your prediction will be crap. Our model will match the training distribution is trained on. And so we could like, there are lots of ways to tweak the training data to refer to high quality content that we want. Yeah. I would say also this, like this slop that is returned by, by traditional search engines, like Google and Bing, you have the slop is then, uh, transferred into the, these LLMs in like a search GBT or, you know, our other systems like that. Like if slop comes in, slop will go out. And so, yeah, that's another answer to how we're different is like, we're not like traditional search engines. We want to give like the highest quality results and like have full control over whatever you want. If you don't want slop, you get that. And then if you put an LM on top of that, which our customers do, then you just get higher quality results or high quality output.Alessio [00:25:06]: And I use Excel search very often and it's very good. Especially.Swyx [00:25:09]: Wave uses it too.Alessio [00:25:10]: Yeah. Yeah. Yeah. Yeah. Yeah. Like the slop is everywhere, especially when it comes to AI, when it comes to investment. When it comes to all of these things for like, it's valuable to be at the top. And this problem is only going to get worse because. Yeah, no, it's totally. What else is in the toolkit? So you have search API, you have ExaSearch, kind of like the web version. Now you have the list builder. I think you also have web scraping. Maybe just touch on that. Like, I guess maybe people, they want to search and then they want to scrape. Right. So is that kind of the use case that people have? Yeah.Will [00:25:41]: A lot of our customers, they don't just want, because they're building AI applications on top of Exa, they don't just want a list of URLs. They actually want. Like the full content, like cleans, parsed. Markdown. Markdown, maybe chunked, whatever they want, we'll give it to them. And so that's been like huge for customers. Just like getting the URLs and instantly getting the content for each URL is like, and you can do this for 10 or 100 or 1,000 URLs, wherever you want. That's very powerful.Swyx [00:26:05]: Yeah. I think this is the first thing I asked you for when I tried using Exa.Will [00:26:09]: Funny story is like when I built the first version of Exa, it's like, we just happened to store the content. Yes. Like the first 1,024 tokens. Because I just kind of like kept it because I thought of, you know, I don't know why. Really for debugging purposes. And so then when people started asking for content, it was actually pretty easy to serve it. But then, and then we did that, like Exa took off. So the computer's content was so useful. So that was kind of cool.Swyx [00:26:30]: It is. I would say there are other players like Gina, I think is in this space. Firecrawl is in this space. There's a bunch of scraper companies. And obviously scraper is just one part of your stack, but you might as well offer it since you already do it.Will [00:26:43]: Yeah, it makes sense. It's just easy to have an all-in-one solution. And like. We are, you know, building the best scraper in the world. So scraping is a hard problem and it's easy to get like, you know, a good scraper. It's very hard to get a great scraper and it's super hard to get a perfect scraper. So like, and, and scraping really matters to people. Do you have a perfect scraper? Not yet. Okay.Swyx [00:27:05]: The web is increasingly closing to the bots and the scrapers, Twitter, Reddit, Quora, Stack Overflow. I don't know what else. How are you dealing with that? How are you navigating those things? Like, you know. You know, opening your eyes, like just paying them money.Will [00:27:19]: Yeah, no, I mean, I think it definitely makes it harder for search engines. One response is just that there's so much value in the long tail of sites that are open. Okay. Um, and just like, even just searching over those well gets you most of the value. But I mean, there, there is definitely a lot of content that is increasingly not unavailable. And so you could get through that through data partnerships. The bigger we get as a company, the more, the easier it is to just like, uh, make partnerships. But I, I mean, I do see the world as like the future where the. The data, the, the data producers, the content creators will make partnerships with the entities that find that data.Alessio [00:27:53]: Any other fun use case that maybe people are not thinking about? Yeah.Will [00:27:58]: Oh, I mean, uh, there are so many customers. Yeah. What are people doing on AXA? Well, I think dating is a really interesting, uh, application of search that is completely underserved because there's a lot of profiles on the web and a lot of people who want to find love and that I'll use it. They give me. Like, you know, age boundaries, you know, education level location. Yeah. I mean, you want to, what, what do you want to do with data? You want to find like a partner who matches this education level, who like, you know, maybe has written about these types of topics before. Like if you could get a list of all the people like that, like, I think you will unblock a lot of people. I mean, there, I mean, I think this is a very Silicon Valley view of dating for sure. And I'm, I'm well aware of that, but it's just an interesting application of like, you know, I would love to meet like an intellectual partner, um, who like shares a lot of ideas. Yeah. Like if you could do that through better search and yeah.Swyx [00:28:48]: But what is it with Jeff? Jeff has already set me up with a few people. So like Jeff, I think it's my personal exit.Will [00:28:55]: my mom's actually a matchmaker and has got a lot of married. Yeah. No kidding. Yeah. Yeah. Search is built into the book. It's in your jeans. Yeah. Yeah.Swyx [00:29:02]: Yeah. Other than dating, like I know you're having quite some success in colleges. I would just love to map out some more use cases so that our listeners can just use those examples to think about use cases for XR, right? Because it's such a general technology that it's hard to. Uh, really pin down, like, what should I use it for and what kind of products can I build with it?Will [00:29:20]: Yeah, sure. So, I mean, there are so many applications of XR and we have, you know, many, many companies using us for very diverse range of use cases, but I'll just highlight some interesting ones. Like one customer, a big customer is using us to, um, basically build like a, a writing assistant for students who want to write, uh, research papers. And basically like XR will search for, uh, like a list of research papers related to what the student is writing. And then this product has. Has like an LLM that like summarizes the papers to basically it's like a next word prediction, but in, uh, you know, prompted by like, you know, 20 research papers that X has returned. It's like literally just doing their homework for them. Yeah. Yeah. the key point is like, it's, it's, uh, you know, it's, it's, you know, research is, is a really hard thing to do and you need like high quality content as input.Swyx [00:30:08]: Oh, so we've had illicit on the podcast. I think it's pretty similar. Uh, they, they do focus pretty much on just, just research papers and, and that research. Basically, I think dating, uh, research, like I just wanted to like spell out more things, like just the big verticals.Will [00:30:23]: Yeah, yeah, no, I mean, there, there are so many use cases. So finance we talked about, yeah. I mean, one big vertical is just finding a list of companies, uh, so it's useful for VCs, like you said, who want to find like a list of competitors to a specific company they're investigating or just a list of companies in some field. Like, uh, there was one VC that told me that him and his team, like we're using XR for like eight hours straight. Like, like that. For many days on end, just like, like, uh, doing like lots of different queries of different types, like, oh, like all the companies in AI for law or, uh, all the companies for AI for, uh, construction and just like getting lists of things because you just can't find this information with, with traditional search engines. And then, you know, finding companies is also useful for, for selling. If you want to find, you know, like if we want to find a list of, uh, writing assistants to sell to, then we can just, we just use XR ourselves to find that is actually how we found a lot of our customers. Ooh, you can find your own customers using XR. Oh my God. I, in the spirit of. Uh, using XR to bolster XR, like recruiting is really helpful. It is really great use case of XR, um, because we can just get like a list of, you know, people who thought about search and just get like a long list and then, you know, reach out to those people.Swyx [00:31:29]: When you say thought about, are you, are you thinking LinkedIn, Twitter, or are you thinking just blogs?Will [00:31:33]: Or they've written, I mean, it's pretty general. So in that case, like ideally XR would return like the, the really blogs written by people who have just. So if I don't blog, I don't show up to XR, right? Like I have to blog. well, I mean, you could show up. That's like an incentive for people to blog.Swyx [00:31:47]: Well, if you've written about, uh, search in on Twitter and we, we do, we do index a bunch of tweets and then we, we should be able to service that. Yeah. Um, I mean, this is something I tell people, like you have to make yourself discoverable to the web, uh, you know, it's called learning in public, but like, it's even more imperative now because otherwise you don't exist at all.Will [00:32:07]: Yeah, no, no, this is a huge, uh, thing, which is like search engines completely influence. They have downstream effects. They influence the internet itself. They influence what people. Choose to create. And so Google, because they're a keyword based search engine, people like kind of like keyword stuff. Yeah. They're, they're, they're incentivized to create things that just match a lot of keywords, which is not very high quality. Uh, whereas XR is a search algorithm that, uh, optimizes for like high quality and actually like matching what you mean. And so people are incentivized to create content that is high quality, that like the create content that they know will be found by the right person. So like, you know, if I am a search researcher and I want to be found. By XR, I should blog about search and all the things I'm building because, because now we have a search engine like XR that's powerful enough to find them. And so the search engine will influence like the downstream internet in all sorts of amazing ways. Yeah. Uh, whatever the search engine optimizes for is what the internet looks like. Yeah.Swyx [00:33:01]: Are you familiar with the term? McLuhanism? No, it's not. Uh, it's this concept that, uh, like first we shape tools and then the tools shape us. Okay. Yeah. Uh, so there's like this reflexive connection between the things we search for and the things that get searched. Yes. So like once you change the tool. The tool that searches the, the, the things that get searched also change. Yes.Will [00:33:18]: I mean, there was a clear example of that with 30 years of Google. Yeah, exactly. Google has basically trained us to think of search and Google has Google is search like in people's heads. Right. It's one, uh, hard part about XR is like, uh, ripping people away from that notion of search and expanding their sense of what search could be. Because like when people think search, they think like a few keywords, or at least they used to, they think of a few keywords and that's it. They don't think to make these like really complex paragraph long requests for information and get a perfect list. ChatGPT was an interesting like thing that expanded people's understanding of search because you start using ChatGPT for a few hours and you go back to Google and you like paste in your code and Google just doesn't work and you're like, oh, wait, it, Google doesn't do work that way. So like ChatGPT expanded our understanding of what search can be. And I think XR is, uh, is part of that. We want to expand people's notion, like, Hey, you could actually get whatever you want. Yeah.Alessio [00:34:06]: I search on XR right now, people writing about learning in public. I was like, is it gonna come out with Alessio? Am I, am I there? You're not because. Bro. It's. So, no, it's, it's so about, because it thinks about learning, like in public, like public schools and like focuses more on that. You know, it's like how, when there are like these highly overlapping things, like this is like a good result based on the query, you know, but like, how do I get to Alessio? Right. So if you're like in these subcultures, I don't think this would work in Google well either, you know, but I, I don't know if you have any learnings.Swyx [00:34:40]: No, I'm the first result on Google.Alessio [00:34:42]: People writing about learning. In public, you're not first result anymore, I guess.Swyx [00:34:48]: Just type learning public in Google.Alessio [00:34:49]: Well, yeah, yeah, yeah, yeah. But this is also like, this is in Google, it doesn't work either. That's what I'm saying. It's like how, when you have like a movement.Will [00:34:56]: There's confusion about the, like what you mean, like your intention is a little, uh. Yeah.Alessio [00:35:00]: It's like, yeah, I'm using, I'm using a term that like I didn't invent, but I'm kind of taking over, but like, they're just so much about that term already that it's hard to overcome. If that makes sense, because public schools is like, well, it's, it's hard to overcome.Will [00:35:14]: Public schools, you know, so there's the right solution to this, which is to specify more clearly what you mean. And I'm not expecting you to do that, but so the, the right interface to search is actually an LLM.Swyx [00:35:25]: Like you should be talking to an LLM about what you want and the LLM translates its knowledge of you or knowledge of what people usually mean into a query that excellent uses, which you have called auto prompts, right?Will [00:35:35]: Or, yeah, but it's like a very light version of that. And really it's just basically the right answer is it's the wrong interface and like very soon interface to search and really to everything will be LLM. And the LLM just has a full knowledge of you, right? So we're kind of building for that world. We're skating to where the puck is going to be. And so since we're moving to a world where like LLMs are interfaced to everything, you should build a search engine that can handle complex LLM queries, queries that come from LLMs. Because you're probably too lazy, I'm too lazy too, to write like a whole paragraph explaining, okay, this is what I mean by this word. But an LLM is not lazy. And so like the LLM will spit out like a paragraph or more explaining exactly what it wants. You need a search engine that can handle that. Traditional search engines like Google or Bing, they're actually... Designed for humans typing keywords. If you give a paragraph to Google or Bing, they just completely fail. And so Exa can handle paragraphs and we want to be able to handle it more and more until it's like perfect.Alessio [00:36:24]: What about opinions? Do you have lists? When you think about the list product, do you think about just finding entries? Do you think about ranking entries? I'll give you a dumb example. So on Lindy, I've been building the spot that every week gives me like the top fantasy football waiver pickups. But every website is like different opinions. I'm like, you should pick up. These five players, these five players. When you're making lists, do you want to be kind of like also ranking and like telling people what's best? Or like, are you mostly focused on just surfacing information?Will [00:36:56]: There's a really good distinction between filtering to like things that match your query and then ranking based on like what is like your preferences. And ranking is like filtering is objective. It's like, does this document match what you asked for? Whereas ranking is more subjective. It's like, what is the best? Well, it depends what you mean by best, right? So first, first table stakes is let's get the filtering into a perfect place where you actually like every document matches what you asked for. No surgeon can do that today. And then ranking, you know, there are all sorts of interesting ways to do that where like you've maybe for, you know, have the user like specify more clearly what they mean by best. You could do it. And if the user doesn't specify, you do your best, you do your best based on what people typically mean by best. But ideally, like the user can specify, oh, when I mean best, I actually mean ranked by the, you know, the number of people who visited that site. Let's say is, is one example ranking or, oh, what I mean by best, let's say you're listing companies. What I mean by best is like the ones that have, uh, you know, have the most employees or something like that. Like there are all sorts of ways to rank a list of results that are not captured by something as subjective as best. Yeah. Yeah.Alessio [00:38:00]: I mean, it's like, who are the best NBA players in the history? It's like everybody has their own. Right.Will [00:38:06]: Right. But I mean, the, the, the search engine should definitely like, even if you don't specify it, it should do as good of a job as possible. Yeah. Yeah. No, no, totally. Yeah. Yeah. Yeah. Yeah. It's a new topic to people because we're not used to a search engine that can handle like a very complex ranking system. Like you think to type in best basketball players and not something more specific because you know, that's the only thing Google could handle. But if Google could handle like, oh, basketball players ranked by like number of shots scored on average per game, then you would do that. But you know, they can't do that. So.Swyx [00:38:32]: Yeah. That's fascinating. So you haven't used the word agents, but you're kind of building a search agent. Do you believe that that is agentic in feature? Do you think that term is distracting?Will [00:38:42]: I think it's a good term. I do think everything will eventually become agentic. And so then the term will lose power, but yes, like what we're building is agentic it in a sense that it takes actions. It decides when to go deeper into something, it has a loop, right? It feels different from traditional search, which is like an algorithm, not an agent. Ours is a combination of an algorithm and an agent.Swyx [00:39:05]: I think my reflection from seeing this in the coding space where there's basically sort of classic. Framework for thinking about this stuff is the self-driving levels of autonomy, right? Level one to five, typically the level five ones all failed because there's full autonomy and we're not, we're not there yet. And people like control. People like to be in the loop. So the, the, the level ones was co-pilot first and now it's like cursor and whatever. So I feel like if it's too agentic, it's too magical, like, like a, like a one shot, I stick a, stick a paragraph into the text box and then it spits it back to me. It might feel like I'm too disconnected from the process and I don't trust it. As opposed to something where I'm more intimately involved with the research product. I see. So like, uh, wait, so the earlier versions are, so if trying to stick to the example of the basketball thing, like best basketball player, but instead of best, you, you actually get to customize it with like, whatever the metric is that you, you guys care about. Yeah. I'm still not a basketballer, but, uh, but, but, you know, like, like B people like to be in my, my thesis is that agents level five agents failed because people like to. To kind of have drive assist rather than full self-driving.Will [00:40:15]: I mean, a lot of this has to do with how good agents are. Like at some point, if agents for coding are better than humans at all tests and then humans block, yeah, we're not there yet.Swyx [00:40:25]: So like in a world where we're not there yet, what you're pitching us is like, you're, you're kind of saying you're going all the way there. Like I kind of, I think all one is also very full, full self-driving. You don't get to see the plan. You don't get to affect the plan yet. You just fire off a query and then it goes away for a couple of minutes and comes back. Right. Which is effectively what you're saying you're going to do too. And you think there's.Will [00:40:42]: There's a, there's an in-between. I saw. Okay. So in building this product, we're exploring new interfaces because what does it mean to kick off a search that goes and takes 10 minutes? Like, is that a good interface? Because what if the search is actually wrong or it's not exactly, exactly specified to what you mean, which is why you get previews. Yeah. You get previews. So it is iterative, but ultimately once you've specified exactly what you mean, then you kind of do just want to kick off a batch job. Right. So perhaps what you're getting at is like, uh, there's this barrier with agents where you have to like explain the full context of what you mean, and a lot of failure modes happen when you have, when you don't. Yeah. There's failure modes from the agent, just not being smart enough. And then there's failure modes from the agent, not understanding exactly what you mean. And there's a lot of context that is shared between humans that is like lost between like humans and, and this like new creature.Alessio [00:41:32]: Yeah. Yeah. Because people don't know what's going on. I mean, to me, the best example of like system prompts is like, why are you writing? You're a helpful assistant. Like. Of course you should be an awful, but people don't yet know, like, can I assume that, you know, that, you know, it's like, why did the, and now people write, oh, you're a very smart software engineer, but like, you never made, you never make mistakes. Like, were you going to try and make mistakes before? So I think people don't yet have an understanding, like with, with driving people know what good driving is. It's like, don't crash, stay within kind of like a certain speed range. It's like, follow the directions. It's like, I don't really have to explain all of those things. I hope. But with. AI and like models and like search, people are like, okay, what do you actually know? What are like your assumptions about how search, how you're going to do search? And like, can I trust it? You know, can I influence it? So I think that's kind of the, the middle ground, like before you go ahead and like do all the search, it's like, can I see how you're doing it? And then maybe help show your work kind of like, yeah, steer you. Yeah. Yeah.Will [00:42:32]: No, I mean, yeah. Sure. Saying, even if you've crafted a great system prompt, you want to be part of the process itself. Uh, because the system prompt doesn't, it doesn't capture everything. Right. So yeah. A system prompt is like, you get to choose the person you work with. It's like, oh, like I want, I want a software engineer who thinks this way about code. But then even once you've chosen that person, you can't just give them a high level command and they go do it perfectly. You have to be part of that process. So yeah, I agree.Swyx [00:42:58]: Just a side note for my system, my favorite system, prompt programming anecdote now is the Apple intelligence system prompt that someone, someone's a prompt injected it and seen it. And like the Apple. Intelligence has the words, like, please don't, don't hallucinate. And it's like, of course we don't want you to hallucinate. Right. Like, so it's exactly that, that what you're talking about, like we should train this behavior into the model, but somehow we still feel the need to inject into the prompt. And I still don't even think that we are very scientific about it. Like it, I think it's almost like cargo culting. Like we have this like magical, like turn around three times, throw salt over your shoulder before you do something. And like, it worked the last time. So let's just do it the same time now. And like, we do, there's no science to this.Will [00:43:35]: I do think a lot of these problems might be ironed out in future versions. Right. So, and like, they might, they might hide the details from you. So it's like, they actually, all of them have a system prompt. That's like, you are a helpful assistant. You don't actually have to include it, even though it might actually be the way they've implemented in the backend. It should be done in RLE AF.Swyx [00:43:52]: Okay. Uh, one question I was just kind of curious about this episode is I'm going to try to frame this in terms of this, the general AI search wars, you know, you're, you're one player in that, um, there's perplexity, chat, GPT, search, and Google, but there's also like the B2B side, uh, we had. Drew Houston from Dropbox on, and he's competing with Glean, who've, uh, we've also had DD from, from Glean on, is there an appetite for Exa for my company's documents?Will [00:44:19]: There is appetite, but I think we have to be disciplined, focused, disciplined. I mean, we're already taking on like perfect web search, which is a lot. Um, but I mean, ultimately we want to build a perfect search engine, which definitely for a lot of queries involves your, your personal information, your company's information. And so, yeah, I mean, the grandest vision of Exa is perfect search really over everything, every domain, you know, we're going to have an Exa satellite, uh, because, because satellites can gather information that, uh, is not available publicly. Uh, gotcha. Yeah.Alessio [00:44:51]: Can we talk about AGI? We never, we never talk about AGI, but you had, uh, this whole tweet about, oh, one being the biggest kind of like AI step function towards it. Why does it feel so important to you? I know there's kind of like always criticism and saying, Hey, it's not the smartest son is better. It's like, blah, blah, blah. What? You choose C. So you say, this is what Ilias see or Sam see what they will see.Will [00:45:13]: I've just, I've just, you know, been connecting the dots. I mean, this was the key thing that a bunch of labs were working on, which is like, can you create a reward signal? Can you teach yourself based on a reward signal? Whether you're, if you're trying to learn coding or math, if you could have one model say, uh, be a grading system that says like you have successfully solved this programming assessment and then one model, like be the generative system. That's like, here are a bunch of programming assessments. You could train on that. It's basically whenever you could create a reward signal for some task, you could just generate a bunch of tasks for yourself. See that like, oh, on two of these thousand, you did well. And then you just train on that data. It's basically like, I mean, creating your own data for yourself and like, you know, all the labs working on that opening, I built the most impressive product doing that. And it's just very, it's very easy now to see how that could like scale to just solving, like, like solving programming or solving mathematics, which sounds crazy, but everything about our world right now is crazy.Alessio [00:46:07]: Um, and so I think if you remove that whole, like, oh, that's impossible, and you just think really clearly about like, what's now possible with like what, what they've done with O1, it's easy to see how that scales. How do you think about older GPT models then? Should people still work on them? You know, if like, obviously they just had the new Haiku, like, is it even worth spending time, like making these models better versus just, you know, Sam talked about O2 at that day. So obviously they're, they're spending a lot of time in it, but then you have maybe. The GPU poor, which are still working on making Lama good. Uh, and then you have the follower labs that do not have an O1 like model out yet. Yeah.Will [00:46:47]: This kind of gets into like, uh, what will the ecosystem of, of models be like in the future? And is there room is, is everything just gonna be O1 like models? I think, well, I mean, there's definitely a question of like inference speed and if certain things like O1 takes a long time, because that's the thing. Well, I mean, O1 is, is two things. It's like one it's it's use it's bootstrapping itself. It's teaching itself. And so the base model is smarter. But then it also has this like inference time compute where it could like spend like many minutes or many hours thinking. And so even the base model, which is also fast, it doesn't have to take minutes. It could take is, is better, smarter. I believe all models will be trained with this paradigm. Like you'll want to train on the best data, but there will be many different size models from different, very many different like companies, I believe. Yeah. Because like, I don't, yeah, I mean, it's hard, hard to predict, but I don't think opening eye is going to dominate like every possible LLM for every possible. Use case. I think for a lot of things, like you just want the fastest model and that might not involve O1 methods at all.Swyx [00:47:42]: I would say if you were to take the exit being O1 for search, literally, you really need to prioritize search trajectories, like almost maybe paying a bunch of grad students to go research things. And then you kind of track what they search and what the sequence of searching is, because it seems like that is the gold mine here, like the chain of thought or the thinking trajectory. Yeah.Will [00:48:05]: When it comes to search, I've always been skeptical. I've always been skeptical of human labeled data. Okay. Yeah, please. We tried something at our company at Exa recently where me and a bunch of engineers on the team like labeled a bunch of queries and it was really hard. Like, you know, you have all these niche queries and you're looking at a bunch of results and you're trying to identify which is matched to query. It's talking about, you know, the intricacies of like some biological experiment or something. I have no idea. Like, I don't know what matches and what, what labelers like me tend to do is just match by keyword. I'm like, oh, I don't know. Oh, like this document matches a bunch of keywords, so it must be good. But then you're actually completely missing the meaning of the document. Whereas an LLM like GB4 is really good at labeling. And so I actually think like you just we get by, which we are right now doing using like LLMs as the labelers specifically for search. I think it's interesting. It's different between like search and like GB5 are different because GB5 might benefit from training on a lot of PhD notes because like GB5 might have to do like very, very complex, like, uh, problem-solving in after when it was given an input, but with search, it's actually a very different problem. You're, you're asking simple questions about billions of things. So like, whereas like GB5 is asking a really hard, it's like solving a really hard question, but it's one, it's like one question, a PhD level question with search. You're asking like simple questions about billions of things. Like, is this a startup? Did this person write a blog post about search? You know, those are actually simple questions. You don't need like PhD level training data. Does that make sense? Yeah.Alessio [00:49:33]: What else we got here? Uh, nap pods. Oh, yeah.Swyx [00:49:38]: What's the, yeah. So like just generally, I think, uh, EXA has a very interesting company building vibe. Like you, you have a meme Lord CTO, um, I guess, I don't know. Like, and, and you, you have, you just generally, um, are counter consensus in a bunch of things. What is the culture at EXA?Will [00:49:59]: Like, yeah, I, me and Jeff are, I mean, we've been best friends. It's like, like we met, like met like first day of college. I've been best friends ever since. And we have a really good vibe. I think that's like intense, but also really fun. And like, like funny, honestly, we have a ton of like, we just laugh a lot, a ton at EXA. And I think that's just like, you see that in every part of our culture. We don't really care about how the world sees anything. Like me and Jeff are just like that. Like, we're just thinking really just like, like, what should we do here? Like, what do we need? And so in the nap pod case, it was like, people get tired a lot when they're coding or doing anything really. And like, why can't we just sleep here or, or like nap? And, uh, okay, if we need a nap, then we should get a nap pod. It's crazy to me that there aren't nap pods in lots of companies because like I get tired all the time. I take a nap like every other day, probably for like 20 minutes. I'm actually never actually napping. I'm just thinking about a problem, but closing my eyes really like, um, first of all, it makes me come up with more creative solutions. And then also actually it gives me some rest. So, which is awesome.Swyx [00:50:54]: Google was the original company that had the nap pods at work, right? Oh, okay.Will [00:50:56]: Well, then at one point Google was thinking for first principles and everything too. Um, and that was reflected in their nap pods.Swyx [00:51:02]: So you, you like, you like didn't just get a nap pod for your office. You like found something from China and you're like, who wants to get in on this? Let's get a container full of them. Yeah.Will [00:51:11]: Well, we're trying, we try to be frugal. So like we were, we were looking at like different nap pods. And then, uh, at some point we were like, wait, China probably has solved this problem. And so then we ordered it from China and then it was actually so heavy. Like when it came off the truck, it was like 500 pounds. And I like the truck was like having trouble, like putting it on the ground. And so like me and the delivery guy were like trying to hold it. And then we couldn't, we were struggling. So someone came out from on the street and like heart started helping us hurt yourself. I know it was really dangerous, but we did it. And then it was awesome.Alessio [00:51:37]: And it's funny. I was reading the tech crunch article about it. It was a tech crunch article on the nap pods. Yeah. And then Jeff explained, well, they quote Jeff and this paragraph says, so the nap pods maintain employees ability to stop work and sleep rather than the idea that in quotes, employees are slaves. Close quote, I don't know what I'm. I'm like, I'm sure there's not what event, you know, but I'm curious, like, just like how people there's always like this, I think for a little bit, it went away about like startups and kind of like hustle culture and like all of that.Swyx [00:52:10]: And I think now with AI, people are like, have all these feelings towards AI that are kind of like, I think it's a pro hustle culture, right? Yeah.Will [00:52:17]: But I mean, I mean, ideally the hustle is like people are just having fun, which is people, people are just having fun.Alessio [00:52:23]: Yeah. But I would say from the outside, it's like, people don't like it, you know, I'm saying people not in, in AI and kind of like intact. They're kind of like. Oh, these guys are at it again. These are like the same people that gave us underpaid drivers, like whatever it's like. So it was just funny to see somehow they wanted to make it sound like Jeff was saying employees are slaves, but like, oh, yeah, I don't know. That doesn't make sense.Will [00:52:45]: But yeah, I mean, okay. I can't imagine a more exciting experience than like building something from scratch. That's like a huge deal with a bunch of your friends. Our team is going to look back in 10 years and think this was like the most beautiful experience that you could have in life. And like. That's how I think about it. And yeah, that's just so it's not, it's not a hustle or not. It's like, is this like, like, does this satisfy your core desire to like build things in the world? And it does. Yeah.Alessio [00:53:10]: Anything else we didn't cover any parting thoughts? Are you hiring?Will [00:53:16]: Are you, obviously you're looking for more people to use it, but yeah, yeah, we're definitely hiring. We're, we're growing quite fast and we have a really smart team of engineers and researchers. And we now have a, we just purchased a $5 million H 200 cluster. So we have a lot more compute to play with. Do you run all your own inference? We do a mix of our cluster and like AWS inference that we, we use these are, so we have our current cluster, which is like a one hundreds and now we've updated the new one. We use it for training and research.Swyx [00:53:43]: What's the training versus inference budget? Like, is it like a, is it 50, 50? Is it?Will [00:53:48]: Yeah, we, there will be more inference for search for sure.Swyx [00:53:51]: The other thing I mentioned, so by the way, I'm like sidetracking, but I'm just kind of throwing this in there because I always think about the economics of AI search, like for those, I think, I think if you look up, there's the upper limit is going to be whatever you can monetize off of ads, right? So for Google, let's say it's like a one cent per thousand views, something like that. I don't know the exact number, the exact numbers floating around out there. That means that's your revenue, right? Then your cost has to be lower than that. And so at some point, like for an LLM inference call to be made for every page view, you need to get it lower than. The money that you would take in for, for that. And like, one of the things that I was very surprised, surprised for perplexity and character as well was that they couldn't get it so low that it would be reasonable. I think for you guys, it is a mix of front loading it by indexing. So you only run that compute like once a month, once a, once a quarter, whatever you do re-indexing. And then it's just a little bit more when you, when you do inference, when this search actually gets done, right? Like, so I think when people work out like the economics of such a business, they have to kind of think about where do you put the. The costs. Yes.Will [00:54:52]: Yes. I mean, uh, definitely you have to, you cannot run LLMs over the whole index, you know, billions of things at query time. So you have to pre-process things usually with LLMs, but then you, you can do a re-rank over like, you know, 10, 30, a hundred, depending on a thousand, depending on how. You know, you could, you could play with different sizes of L of transformers to get the cost to work out. I mean, one really interesting thing is like, we're building a search engine at a time where LLM costs are going down like crazy when some very useful. Tool goes down in cost by 200 X in like the space of, I don't know, a couple of years, there are going to be new opportunities in search, right? So like to, to not integrate this and build off, to not like rethink search from scratch, the search algorithm itself, given the fact that things are going down 200 X is crazy.Alessio [00:55:37]: Thank you so much for coming on, man. It was fun.Will [00:55:39]: Thank you. This was so fun. Really fun. Get full access to Latent.Space at www.latent.space/subscribe

Oliver Stone & Peter Kuznick: War Profiteering, Nuclear Tech, NATO v. Russia, & War With Iran

From The Tucker Carlson Show

America’s proxy war with Russia isn’t anything new. It’s been decades in the making. Oliver Stone and Peter Kuznick explain what nuclear war would actually look like. (00:00) How Close Are We to Nuclear War? (12:08) Why Don’t We Know All the Details of 9/11? (29:27) The Nuclear War Chain Reaction (38:23) Warcrimes in Serbia? (49:00) Why Hollywood Exiled Oliver Stone (51:11) Is There Hope for Hollywood? Paid partnerships with: Hillsdale College: Take a free online course today at https://TuckerforHillsdale.com Eight Sleep: Get $350 off the Pod 4 Ultra at https://EightSleep.com/Tucker Learn more about your ad choices. Visit megaphone.fm/adchoices

#2255 - Mark Zuckerberg

From Joe Rogan Experience

Mark Zuckerberg is the chief executive of Meta Platforms Inc., the company behind Facebook, Instagram, Threads, WhatsApp, Meta Quest, Ray-Ban Meta smart glasses, Orion augmented reality glasses, and other digital platforms, devices, and services.  about.facebook.com Take ownership of your health with AG1 and get a FREE bottle of Vitamin D3+K2 AND 5 free Travel Packs with your first subscription. Go to drinkag1.com/joerogan Learn more about your ad choices. Visit podcastchoices.com/adchoices

Does your heartbeat shape your sense of time? | Irena Arslanova

From TED Talks Daily

Do you ever feel like time slows down when you’re bored but flies when you’re having fun? Cognitive neuroscientist Irena Arslanova explores the ways your brain and heart shape your perception of time, revealing how your heartbeat doesn’t just keep you alive — it also influences whether moments feel fleeting or stretched.For a chance to give your own TED Talk, fill out the Idea Search Application: ted.com/ideasearch.Interested in learning more about upcoming TED events? Follow these links:TEDNext: ted.com/futureyouTEDSports: ted.com/sportsTEDAI Vienna: ted.com/ai-vienna Hosted on Acast. See acast.com/privacy for more information.

Page 68 of 676 (13504 episodes from United States)

🇺🇸 About United States Episodes

Explore the diverse voices and perspectives from podcast creators in United States. Each episode offers unique insights into the culture, language, and stories from this region.