🇺🇸 United States Episodes

14819 episodes from United States

Fidji Simo - Creating Delightful Consumer Experiences

My guest this week is Fidji Simo, the CEO of Instacart. Fidji grew up in a small town in the South of France and was the first person in her family to graduate from high school. Since then, she has had a dazzling career with stops at France’s leading university, eBay, and Facebook. Fidji spent the better part of a decade at Facebook where she led the Facebook App before joining the online grocery platform, Instacart, in mid 2021. We talk about Fidji’s consumer product experiences, Instacart’s role within the grocery ecosystem, and delve into her personal philosophy on leadership. Please enjoy this wide-ranging discussion with Fidji Simo. Apply for the Investigative Research Analyst position at Positive Sum. Listen to Founders Podcast Founders Episode 136 - Estee Lauder Founders Episode 288 - Ralph Lauren For the full show notes, transcript, and links to mentioned content, check out the episode page here. ----- This episode is brought to you by Tegus, the modern research platform for leading investors. Stretch your research budget with flexible expert calls you can trust. At a fraction of the cost of traditional expert networks, Tegus customers pay only what an expert charges – with zero markups and no confusing call credits – netting an average 70% savings. Don’t want to conduct a full hour call? Tegus offers the ability to schedule 30-minutes, an offer you won’t find anywhere else. And they don’t stop there. With white-glove custom sourcing for every project and robust compliance measures, including a dedicated 50+ analyst team that vets every call transcript, Tegus ensures your privacy and protection. As the industry innovator for qualitative insights, Tegus helps you find the right experts you need at a quality and speed that can’t be matched. For a limited time, as a listener, you can trial Tegus for free by visiting tegus.co/patrick. ----- Invest Like the Best is a property of Colossus, LLC. For more episodes of Invest Like the Best, visit joincolossus.com/episodes.  Stay up to date on all our podcasts by signing up to Colossus Weekly, our quick dive every Sunday highlighting the top business and investing concepts from our podcasts and the best of what we read that week. Sign up here. Follow us on Twitter: @patrick_oshag | @JoinColossus Show Notes (00:03:51) - (First question) - Comparing her experiences with Facebook and Instacart (00:06:22) - The dimensionality of creating great consumer products online (00:07:50) - How Instacart uses AI now and her advice to other companies who are ready to incorporate AI into their business (00:15:41) - What being a pragmatic technologist means to her (00:18:02) - Influences in younger years that led to her career path in technology (00:21:00) - The landscape Instacart seeks to build and how major key players within the industry are involved (00:27:09) - Data algorithms and their role in helping consumers (00:29:24) - Scale around the original core business (00:32:12) - The functional difference between Instacart shoppers and delivery drivers  (00:34:59) - Issues with fully automated grocery store facilities (00:37:32) - Insight into working with brands and consumer brand loyalty  (00:43:16) - Her vision for the future of Instacart (00:49:34) - Her principles for capital allocation (00:52:34) - Common misperceptions about Instacart from prospective investors (00:54:21) - Her philosophy of seeing the magic in team members (00:56:46) - Expanding knowledge while managing a complex business environment   (01:01:01) - When she felt the most helpless in her career (01:03:46) - Insight into generative AI and how it could shape the online grocery experience (01:08:00) - The role of content and its importance for businesses like Instacart (01:12:35) - The kindest thing anyone has ever done for her

The AI Founder Gene: Being Early, Building Fast, and Believing in Greatness — with Sharif Shameem of Lexica

From Latent Space: The AI Engineer Podcast

Thanks to the over 42,000 latent space explorers who checked out our Replit episode! We are hosting/attending a couple more events in SF and NYC this month. See you if in town!Lexica.art was introduced to the world 24 hours after the release of Stable Diffusion as a search engine for prompts, gaining instant product-market fit as a world discovering generative AI also found they needed to learn prompting by example.Lexica is now 8 months old, serving 5B image searches/day, and just shipped V3 of Lexica Aperture, their own text-to-image model! Sharif Shameem breaks his podcast hiatus with us for an exclusive interview covering his journey building everything with AI!The conversation is nominally about Sharif’s journey through his three startups VectorDash, Debuild, and now Lexica, but really a deeper introspection into what it takes to be a top founder in the fastest moving tech startup scene (possibly ever) of AI. We hope you enjoy this conversation as much as we did!Full transcript is below the fold. We would really appreciate if you shared our pod with friends on Twitter, LinkedIn, Mastodon, Bluesky, or your social media poison of choice!Timestamps* [00:00] Introducing Sharif* [02:00] VectorDash* [05:00] The GPT3 Moment and Building Debuild* [09:00] Stable Diffusion and Lexica* [11:00] Lexica’s Launch & How it Works* [15:00] Being Chronically Early* [16:00] From Search to Custom Models* [17:00] AI Grant Learnings* [19:30] The Text to Image Illuminati?* [20:30] How to Learn to Train Models* [24:00] The future of Agents and Human Intervention* [29:30] GPT4 and Multimodality* [33:30] Sharif’s Startup Manual* [38:30] Lexica Aperture V1/2/3* [40:00] Request for AI Startup - LLM Tools* [41:00] Sequencing your Genome* [42:00] Believe in Doing Great Things* [44:30] Lightning RoundShow Notes* Sharif’s website, Twitter, LinkedIn* VectorDash (5x cheaper than AWS)* Debuild Insider, Fast company, MIT review, tweet, tweet* Lexica* Introducing Lexica* Lexica Stats* Aug: “God mode” search* Sep: Lexica API * Sept: Search engine with CLIP * Sept: Reverse image search* Nov: teasing Aperture* Dec: Aperture v1* Dec - Aperture v2* Jan 2023 - Outpainting* Apr 2023 - Aperture v3* Same.energy* AI Grant* Sharif on Agents: prescient Airpods tweet, Reflection* MiniGPT4 - Sharif on Multimodality* Sharif Startup Manual* Sharif Future* 23andMe Genome Sequencing Tool: Promethease* Lightning Round* Fave AI Product: Cursor.so. Swyx ChatGPT Menubar App.* Acceleration: Multimodality of GPT4. Animated Drawings* Request for Startup: Tools for LLMs, Brex for GPT Agents* Message: Build Weird Ideas!TranscriptAlessio: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO on Residence at Decibel Partners. I'm joined by my co-host Wix, writer and editor of Latent Space. And today we have Sharish Amin. Welcome to the studio. Sharif: Awesome. Thanks for the invite.Swyx: Really glad to have you. [00:00] Introducing SharifSwyx: You've been a dream guest, actually, since we started drafting guest lists for this pod. So glad we could finally make this happen. So what I like to do is usually introduce people, offer their LinkedIn, and then prompt you for what's not on your LinkedIn. And to get a little bit of the person behind the awesome projects. So you graduated University of Maryland in CS. Sharif: So I actually didn't graduate, but I did study. Swyx: You did not graduate. You dropped out. Sharif: I did drop out. Swyx: What was the decision behind dropping out? Sharif: So first of all, I wasn't doing too well in any of my classes. I was working on a side project that took up most of my time. Then I spoke to this guy who ended up being one of our investors. And he was like, actually, I ended up dropping out. I did YC. And my company didn't end up working out. And I returned to school and graduated along with my friends. I was like, oh, it's actually a reversible decision. And that was like that. And then I read this book called The Case Against Education by Brian Kaplan. So those two things kind of sealed the deal for me on dropping out. Swyx: Are you still on hiatus? Could you still theoretically go back? Sharif: Theoretically, probably. Yeah. Still on indefinite leave. Swyx: Then you did some work at Mitra? Sharif: Mitra, yeah. So they're lesser known. So they're technically like an FFRDC, a federally funded research and development center. So they're kind of like a large government contractor, but nonprofit. Yeah, I did some computer vision work there as well. [02:00] VectorDashSwyx: But it seems like you always have an independent founder bone in you. Because then you started working on VectorDash, which is distributed GPUs. Sharif: Yes. Yeah. So VectorDash was a really fun project that we ended up working on for a while. So while I was at Mitra, I had a friend who was mining Ethereum. This was, I think, 2016 or 2017. Oh my God. Yeah. And he was mining on his NVIDIA 1080Ti, making around like five or six dollars a day. And I was trying to train a character recurrent neural network, like a character RNN on my iMessage text messages to make it like a chatbot. Because I was just curious if I could do it. Because iMessage stores all your past messages from years ago in a SQL database, which is pretty nifty. But I wanted to train it. And I needed a GPU. And it was, I think, $60 to $80 for a T4 on AWS, which is really slow compared to a 1080Ti. If you normalize the cost and performance versus the 1080Ti when someone's mining Ethereum, it's like a 20x difference. So I was like, hey, his name was Alex. Alex, I'll give you like 10 bucks if you let me borrow your 1080Ti for a week. I'll give you 10 bucks per day. And it was like 70 bucks. And I used it to train my model. And it worked great. The model was really bad, but the whole trade worked really great. I got a really high performance GPU to train my model on. He got much more than he was making by mining Ethereum. So we had this idea. I was like, hey, what if we built this marketplace where people could rent their GPUs where they're mining cryptocurrency and machine learning researchers could just rent them out and pay a lot cheaper than they would pay AWS. And it worked pretty well. We launched in a few months. We had over 120,000 NVIDIA GPUs on the platform. And then we were the cheapest GPU cloud provider for like a solid year or so. You could rent a pretty solid GPU for like 20 cents an hour. And cryptocurrency miners were making more than they would make mining crypto because this was after the Ethereum crash. And yeah, it was pretty cool. It just turns out that a lot of our customers were college students and researchers who didn't have much money. And they weren't necessarily the best customers to have as a business. Startups had a ton of credits and larger companies were like, actually, we don't really trust you with our data, which makes sense. Yeah, we ended up pivoting that to becoming a cloud GPU provider for video games. So we would stream games from our GPUs. Oftentimes, like many were located just a few blocks away from you because we had the lowest latency of any cloud GPU provider, even lower than like AWS and sometimes Cloudflare. And we decided to build a cloud gaming platform where you could pretty much play your own games on the GPU and then stream it back to your Mac or PC. Swyx: So Stadia before Stadia. Sharif: Yeah, Stadia before Stadia. It's like a year or so before Stadia. Swtx: Wow. Weren't you jealous of, I mean, I don't know, it sounds like Stadia could have bought you or Google could have bought you for Stadia and that never happened? Sharif: It never happened. Yeah, it didn't end up working out for a few reasons. The biggest thing was internet bandwidth. So a lot of the hosts, the GPU hosts had lots of GPUs, but average upload bandwidth in the United States is only 35 megabits per second, I think. And like a 4K stream needs like a minimum of 15 to 20 megabits per second. So you could really only utilize one of those GPUs, even if they had like 60 or 100. [05:00] The GPT3 Moment and Building DebuildSwyx: And then you went to debuild July 2020, is the date that I have. I'm actually kind of just curious, like what was your GPT-3 aha moment? When were you like GPT-3-pilled? Sharif: Okay, so I first heard about it because I was also working on another chatbot. So this was like after, like everything ties back to this chatbot I'm trying to make. This was after working on VectorDash. I was just like hacking on random projects. I wanted to make the chatbot using not really GPT-2, but rather just like it would be pre-programmed. It was pretty much you would give it a goal and then it would ask you throughout the week how much progress you're making to that goal. So take your unstructured response, usually a reply to a text message, and then it would like, plot it for you in like a table and you could see your progress over time. It could be for running or tracking calories. But I wanted to use GPT-3 to make it seem more natural because I remember someone on Bookface, which is still YC's internal forum. They posted and they were like, OpenAI just released AGI and it's GPT-3. I asked it like a bunch of logic puzzles and it solved them all perfectly. And I was like, what? How's no one else talking about this? Like this is either like the greatest thing ever that everyone is missing or like it's not that good. So like I tweeted out if anyone could get me access to it. A few hours later, Greg Brockman responded. Swyx: He is everywhere. Sharif: He's great. Yeah, he's on top of things. And yeah, by that afternoon, I was like messing around with the API and I was like, wow, this is incredible. You could chat with fake people or people that have passed away. You could like, I remember the first conversation I did was this is a chat with Steve Jobs and it was like, interviewer, hi. What are you up to today on Steve? And then like you could talk to Steve Jobs and it was somewhat plausible. Oh, the thing that really blew my mind was I tried to generate code with it. So I'd write the function for a JavaScript header or the header for a JavaScript function. And it would complete the rest of the function. I was like, whoa, does this code actually work? Like I copied it and ran it and it worked. And I tried it again. I gave more complex things and like I kind of understood where it would break, which was like if it was like something, like if it was something you couldn't easily describe in a sentence and like contain all the logic for in a single sentence. So I wanted to build a way where I could visually test whether these functions were actually working. And what I was doing was like I was generating the code in the playground, copying it into my VS code editor, running it and then reloading the react development page. And I was like, okay, cool. That works. So I was like, wait, let me just put this all in like the same page so I can just compile in the browser, run it in the browser and then submit it to the API in the browser as well. So I did that. And it was really just like a simple loop where you just type in the prompt. It would generate the code and then compile it directly in the browser. And it showed you the response. And I did this for like very basic JSX react components. I mean, it worked. It was pretty mind blowing. I remember staying up all night, like working on it. And it was like the coolest thing I'd ever worked on at the time so far. Yeah. And then I was like so mind blowing that no one was talking about this whole GPT three thing. I was like, why is this not on everyone's minds? So I recorded a quick 30 second demo and I posted on Twitter and like I go to bed after staying awake for like 20 hours straight. When I wake up the next morning and I had like 20,000 likes and like 100,000 people had viewed it. I was like, oh, this is so cool. And then I just kept putting demos out for like the next week. And yeah, that was like my GPT three spark moment. Swyx: And you got featured in like Fast Company, MIT Tech Review, you know, a bunch of stuff, right? Sharif: Yeah. Yeah. I think a lot of it was just like the API had been there for like a month prior already. Swyx: Not everyone had access. Sharif: That's true. Not everyone had access. Swyx: So you just had the gumption to tweet it out. And obviously, Greg, you know, on top of things as always. Sharif: Yeah. Yeah. I think it also makes a lot of sense when you kind of share things in a way that's easily consumable for people to understand. Whereas if you had shown a terminal screenshot of a generating code, that'd be pretty compelling. But whereas seeing it get rendered and compiled directly in front of you, there's a lot more interesting. There's also that human aspect to it where you want to relate things to the end user, not just like no one really cares about evals. When you can create a much more compelling demo explaining how it does on certain tasks. [09:00] Stable Diffusion and LexicaSwyx: Okay. We'll round it out soon. But in 2022, you moved from Debuild to Lexica, which was the search engine. I assume this was inspired by stable diffusion, but I can get the history there a little bit. Sharif: Yeah. So I was still working on Debuild. We were growing at like a modest pace and I was in the stable... Swyx: I was on the signup list. I never got off. Sharif: Oh yeah. Well, we'll get you off. It's not getting many updates anymore, but yeah, I was in the stable diffusion discord and I was in it for like many hours a day. It was just like the most exciting thing I'd ever done in a discord. It was so cool. Like people were generating so many images, but I didn't really know how to write prompts and people were like writing really complicated things. They would be like, like a modern home training on our station by Greg Rutkowski, like a 4k Unreal Engine. It's like that there's no way that actually makes the images look better. But everyone was just kind of copying everyone else's prompts and like changing like the first few words. Swyx: Yeah. Yeah. Sharif: So I was like using the discord search bar and it was really bad because it showed like five images at a time. And I was like, you know what? I could build a much better interface for this. So I ended up scraping the entire discord. It was like 10 million images. I put them in a database and I just pretty much built a very basic search engine where you could just type for type a word and then it returned all the prompts that had that word. And I built the entire website for it in like 20, in like about two days. And we shipped it the day I shipped it the day after the stable diffusion weights were open sourced. So about 24 hours later and it kind of took off in a way that I never would have expected. Like I thought it'd be this cool utility that like hardcore stable diffusion users would find useful. But it turns out that almost anyone who mentioned stable diffusion would also kind of mention Lexica in conjunction with it. I think it's because it was like it captured the zeitgeist in an easy to share way where it's like this URL and there's this gallery and you can search. Whereas running the model locally was a lot harder. You'd have to like to deploy it on your own GPU and like set up your own environment and like do all that stuff. Swyx: Oh, my takeaway. I have two more to add to the reasons why Lexica works at the time. One is lower latency is all you need. So in other words, instead of waiting a minute for your image, you could just search and find stuff that other people have done. That's good. And then two is everyone knew how to search already, but people didn't know how to prompt. So you were the bridge. Sharif: That's true. Yeah. You would get a lot better looking images by typing a one word prompt versus prompting for that one word. Yeah. Swyx: Yeah. That is interesting. [11:00] Lexica’s Explosion at LaunchAlessio: The numbers kind of speak for themselves, right? Like 24 hours post launch, 51,000 queries, like 2.2 terabytes in bandwidth. Going back to the bandwidth problem that you have before, like you would have definitely run into that. Day two, you doubled that. It's like 111,000 queries, four and a half terabytes in bandwidth, 22 million images served. So it's pretty crazy. Sharif: Yeah. I think we're, we're doing like over 5 billion images served per month now. It's like, yeah, that's, it's pretty crazy how much things have changed since then. Swyx: Yeah. I'm still showing people like today, even today, you know, it's been a few months now. This is where you start to learn image prompting because they don't know. Sharif: Yeah, it is interesting. And I, it's weird because I didn't really think it would be a company. I thought it would just be like a cool utility or like a cool tool that I would use for myself. And I really was just building it for myself just because I didn't want to use the Discord search bar. But yeah, it was interesting that a lot of other people found it pretty useful as well. [11:00] How Lexica WorksSwyx: So there's a lot of things that you release in a short amount of time. The God mode search was kind of like, obviously the first thing, I guess, like maybe to talk about some of the underlying technology you're using clip to kind of find, you know, go from image to like description and then let people search it. Maybe talk a little bit about what it takes to actually make the search magic happen. Sharif: Yeah. So the original search was just using Postgres' full text search and it would only search the text contents of the prompt. But I was inspired by another website called Same Energy, where like a visual search engine. It's really cool. Do you know what happened to that guy? I don't. Swyx: He released it and then he disappeared from the internet. Sharif: I don't know what happened to him, but I'm sure he's working on something really cool. He also worked on like Tabnine, which was like the very first version of Copilot or like even before Copilot was Copilot. But yeah, inspired by that, I thought like being able to search images by their semantics. The contents of the image was really interesting. So I pretty much decided to create a search index on the clip embeddings, the clip image embeddings of all the images. And when you would search it, we would just do KNN search on pretty much the image embedding index. I mean, we had way too many embeddings to store on like a regular database. So we had to end up using FAISS, which is a Facebook library for really fast KNN search and embedding search. That was pretty fun to set up. It actually runs only on CPUs, which is really cool. It's super efficient. You compute the embeddings on GPUs, but like you can serve it all on like an eight core server and it's really, really fast. Once we released the semantic search on the clip embeddings, people were using the search way more. And you could do other cool things. You could do like similar image search where if you found like a specific image you liked, you could upload it and it would show you relevant images as well. Swyx: And then right after that, you raised your seed money from AI grant, NetFreedman, then Gross. Sharif: Yeah, we raised about $5 million from Daniel Gross. And then we also participated in AI grant. That was pretty cool. That was kind of the inflection point. Not much before that point, Lexic was kind of still a side project. And I told myself that I would focus on it full time or I'd consider focusing on it full time if we had broke like a million users. I was like, oh, that's gonna be like years away for sure. And then we ended up doing that in like the first week and a half. I was like, okay, there's something here. And it was kind of that like deal was like growing like pretty slowly and like pretty linearly. And then Lexica was just like this thing that just kept going up and up and up. And I was so confused. I was like, man, people really like looking at pictures. This is crazy. Yeah. And then we decided to pivot the entire company and just focus on Lexica full time at that point. And then we raised our seed round. [15:00] Being Chronically EarlySwyx: Yeah. So one thing that you casually dropped out, the one that slip, you said you were working on Lexica before the launch of Stable Diffusion such that you were able to launch Lexica one day after Stable Diffusion. Sharif: Yeah.Swyx: How did you get so early into Stable Diffusion? Cause I didn't hear about it. Sharif: Oh, that's a good question. I, where did I first hear about Stable Diffusion? I'm not entirely sure. It must've been like somewhere on Twitter or something. That changed your life. Yeah, it was great. And I got into the discord cause I'd used Dolly too before, but, um, there were a lot of restrictions in place where you can generate human faces at the time. You can do that now. But when I first got access to it, like you couldn't do any faces. It was like, there were like a, the list of adjectives you couldn't use was quite long. Like I had a friend from Pakistan and it can generate anything with the word Pakistan in it for some reason. But Stable Diffusion was like kind of the exact opposite where there were like very, very few rules. So that was really, really fun and interesting, especially seeing the chaos of like a bunch of other people also using it right in front of you. That was just so much fun. And I just wanted to do something with it. I thought it was honestly really fun. Swyx: Oh, well, I was just trying to get tips on how to be early on things. Cause you're pretty consistently early to things, right? You were Stadia before Stadia. Um, and then obviously you were on. Sharif: Well, Stadia is kind of shut down now. So I don't know if being early to that was a good one. Swyx: Um, I think like, you know, just being consistently early to things that, uh, you know, have a lot of potential, like one of them is going to work out and you know, then that's how you got Lexica. [16:00] From Search to Custom ModelsAlessio: How did you decide to go from search to running your own models for a generation? Sharif: That's a good question. So we kind of realized that the way people were using Lexica was they would have Lexica open in one tab and then in another tab, they'd have a Stable Diffusion interface. It would be like either a discord or like a local run interface, like the automatic radio UI, um, or something else. I just, I would watch people use it and they would like all tabs back and forth between Lexica and their other UI. And they would like to scroll through Lexica, click on the prompt, click on an image, copy the prompt, and then paste it and maybe change a word or two. And I was like, this should really kind of just be all within Lexica. Like, it'd be so cool if you could just click a button in Lexica and get an editor and generate your images. And I found myself also doing the all tab thing, or it was really frustrating. I was like, man, this is kind of tedious. Like I really wish it was much simpler. So we just built generations directly within Lexica. Um, so we do, we deployed it on, I don't remember when we first launched, I think it was November, December. And yeah, people love generating directly within it. [17:00] AI Grant LearningsSwyx: I was also thinking that this was coming out of AI grants where, you know, I think, um, yeah, I was like a very special program. I was just wondering if you learned anything from, you know, that special week where everyone was in town. Sharif: Yeah, that was a great week. I loved it. Swyx: Yeah. Bring us, bring us in a little bit. Cause it was awesome. There. Sharif: Oh, sure. Yeah. It's really, really cool. Like all the founders in AI grants are like fantastic people. And so I think the main takeaway from the AI grant was like, you have this massive overhang in compute or in capabilities in terms of like these latest AI models, but to the average person, there's really not that many products that are that cool or useful to them. Like the latest one that has hit the zeitgeist was chat GPT, which used arguably the same GPT three model, but like RLHF, but you could have arguably built like a decent chat GPT product just using the original GPT three model. But no one really did it. Now there were some restrictions in place and opening. I like to slowly release them over the few months or years after they release the original API. But the core premise behind AI grants is that there are way more capabilities than there are products. So focus on building really compelling products and get people to use them. And like to focus less on things like hitting state of the art on evals and more on getting users to use something. Swyx: Make something people want.Sharif: Exactly. Host: Yeah, we did an episode on LLM benchmarks and we kind of talked about how the benchmarks kind of constrain what people work on, because if your model is not going to do well, unlike the well-known benchmarks, it's not going to get as much interest and like funding. So going at it from a product lens is cool. [19:30] The Text to Image Illuminati?Swyx: My hypothesis when I was seeing the sequence of events for AI grants and then for Lexica Aperture was that you had some kind of magical dinner with Emad and David Holtz. And then they taught you the secrets of training your own model. Is that how it happens? Sharif: No, there's no secret dinner. The Illuminati of text to image. We did not have a meeting. I mean, even if we did, I wouldn't tell you. But it really boils down to just having good data. If you think about diffusion models, really the only thing they do is learn a distribution of data. So if you have high quality data, learn that high quality distribution. Or if you have low quality data, it will learn to generate images that look like they're from that distribution. So really it boils down to the data and the amount of data you have and that quality of that data, which means a lot of the work in training high quality models, at least diffusion models, is not really in the model architecture, but rather just filtering the data in a way that makes sense. So for Lexica, we do a lot of aesthetic scoring on images and we use the rankings we get from our website because we get tens of millions of people visiting it every month. So we can capture a lot of rankings. Oh, this person liked this image when they saw this one right next to it. Therefore, they probably preferred this one over that. You can do pairwise ranking to rank images and then compute like ELO scores. You can also just train aesthetic models to learn to classify a model, whether or not someone will like it or whether or not it's like, rank it on a scale of like one to ten, for example. So we mostly use a lot of the traffic we get from Lexica and use that to kind of filter our data sets and use that to train better aesthetic models. [20:30] How to Learn to Train ModelsSwyx: You had been a machine learning engineer before. You've been more of an infrastructure guy. To build, you were more of a prompt engineer with a bit of web design. This was the first time that you were basically training your own model. What was the wrap up like? You know, not to give away any secret sauce, but I think a lot of people who are traditional software engineers are feeling a lot of, I don't know, fear when encountering these kinds of domains. Sharif: Yeah, I think it makes a lot of sense. And to be fair, I didn't have much experience training massive models at this scale before I did it. A lot of times it's really just like, in the same way when you're first learning to program, you would just take the problem you're having, Google it, and go through the stack overflow post. And then you figure it out, but ultimately you will get to the answer. It might take you a lot longer than someone who's experienced, but I think there are enough resources out there where it's possible to learn how to do these things. Either just reading through GitHub issues for relevant models. Swyx: Oh God. Sharif: Yeah. It's really just like, you might be slower, but it's definitely still possible. And there are really great courses out there. The Fast AI course is fantastic. There's the deep learning book, which is great for fundamentals. And then Andrej Karpathy's online courses are also excellent, especially for language modeling. You might be a bit slower for the first few months, but ultimately I think if you have the programming skills, you'll catch up pretty quickly. It's not like this magical dark science that only three people in the world know how to do well. Probably was like 10 years ago, but now it's becoming much more open. You have open source collectives like Eleuther and LAION, where they like to share the details of their large scale training runs. So you can learn from a lot of those people. Swyx: Yeah. I think what is different for programmers is having to estimate significant costs upfront before they hit run. Because it's not a thing that you normally consider when you're coding, but yeah, like burning through your credits is a fear that people have. Sharif: Yeah, that does make sense. In that case, like fine tuning larger models gets you really, really far. Even using things like low rank adaptation to fine tune, where you can like fine tune much more efficiently on a single GPU. Yeah, I think people are underestimating how far you can really get just using open source models. I mean, before Lexica, I was working on Debuild and we were using the GP3 API, but I was also like really impressed at how well you could get open source models to run by just like using the API, collecting enough samples from like real world user feedback or real world user data using your product. And then just fine tuning the smaller open source models on those examples. And now you have a model that's pretty much state of the art for your specific domain. Whereas the runtime cost is like 10 times or even 100 times cheaper than using an API. Swyx: And was that like GPT-J or are you talking BERT? Sharif: I remember we tried GPT-J, but I think FLAN-T5 was like the best model we were able to use for that use case. FLAN-T5 is awesome. If you can, like if your prompt is small enough, it's pretty great. And I'm sure there are much better open source models now. Like Vicuna, which is like the GPT-4 variant of like Lama fine tuned on like GPT-4 outputs. Yeah, they're just going to get better and they're going to get better much, much faster. Swyx: Yeah. We're just talking in a previous episode to the creator of Dolly, Mike Conover, which is actually commercially usable instead of Vicuna, which is a research project. Sharif: Oh, wow. Yeah, that's pretty cool. [24:00] Why No Agents?Alessio: I know you mentioned being early. Obviously, agents are one of the hot things here. In 2021, you had this, please buy me AirPods, like a demo that you tweeted with the GPT-3 API. Obviously, one of the things about being early in this space, you can only do one thing at a time, right? And you had one tweet recently where you said you hoped that that demo would open Pandora's box for a bunch of weird GPT agents. But all we got were docs powered by GPT. Can you maybe talk a little bit about, you know, things that you wish you would see or, you know, in the last few, last few weeks, we've had, you know, Hugging GPT, Baby AGI, Auto GPT, all these different kind of like agent projects that maybe now are getting closer to the, what did you say, 50% of internet traffic being skips of GPT agents. What are you most excited about, about these projects and what's coming? Sharif: Yeah, so we wanted a way for users to be able to paste in a link for the documentation page for a specific API, and then describe how to call that API. And then the way we would need to pretty much do that for Debuild was we wondered if we could get an agent to browse the docs page, read through it, summarize it, and then maybe even do things like create an API key and register it for that user. To do that, we needed a way for the agent to read the web page and interact with it. So I spent about a day working on that demo where we just took the web page, serialized it into a more compact form that fit within the 2048 token limit of like GPT-3 at the time. And then just decide what action to do. And then it would, if the page was too long, it would break it down into chunks. And then you would have like a sub prompt, decide on which chunk had the best action. And then at the top node, you would just pretty much take that action and then run it in a loop. It was really, really expensive. I think that one 60 second demo cost like a hundred bucks or something, but it was wildly impractical. But you could clearly see that agents were going to be a thing, especially ones that could read and write and take actions on the internet. It was just prohibitively expensive at the time. And the context limit was way too small. But yeah, I think it seems like a lot of people are taking it more seriously now, mostly because GPT-4 is way more capable. The context limit's like four times larger at 8,000 tokens, soon 32,000. And I think the only problem that's left to solve is finding a really good representation for a webpage that allows it to be consumed by a text only model. So some examples are like, you could just take all the text and pass it in, but that's probably too long. You could take all the interactive only elements like buttons and inputs, but then you miss a lot of the relevant context. There are some interesting examples, which I really like is you could run the webpage or you could run the browser in a terminal based browser. So there are some browsers that run in your terminal, which serialize everything into text. And what you can do is just take that frame from that terminal based browser and pass that directly to the model. And it's like a really, really good representation of the webpage because they do things where for graphical elements, they kind of render it using ASCII blocks. But for text, they render it as actual text. So you could just remove all the weird graphical elements, just keep all the text. And that works surprisingly well. And then there are other problems to solve, which is how do you get the model to take an action? So for example, if you have a booking page and there's like a calendar and there are 30 days on the calendar, how do you get it to specify which button to press? It could say 30, and you can match string based and like find the 30. But for example, what if it's like a list of friends in Facebook and trying to delete a friend? There might be like 30 delete buttons. How do you specify which one to click on? The model might say like, oh, click on the one for like Mark. But then you'd have to figure out the delete button in relation to Mark. And there are some ways to solve this. One is there's a cool Chrome extension called Vimium, which lets you use Vim in your Chrome browser. And what you do is you can press F and over every interactive element, it gives you like a character or two characters. Or if you type those two characters, it presses that button or it opens or focuses on that input. So you could combine a lot of these ideas and then get a really good representation of the web browser in text, and then also give the model a really, really good way to control the browser as well. And I think those two are the core part of the problem. The reasoning ability is definitely there. If a model can score in the top 10% on the bar exam, it can definitely browse a web page. It's really just how do you represent text to the model and how do you get the model to perform actions back on the web page? Really, it's just an engineering problem. Swyx: I have one doubt, which I'd love your thoughts on. How do you get the model to pause when it doesn't have enough information and ask you for additional information because you under specified your original request? Sharif: This is interesting. I think the only way to do this is to have a corpus where your training data is like these sessions of agents browsing the web. And you have to pretty much figure out where the ones that went wrong or the agents that went wrong, or did they go wrong and just replace it with, hey, I need some help. And then if you were to fine tune a larger model on that data set, you would pretty much get them to say, hey, I need help on the instances where they didn't know what to do next. Or if you're using a closed source model like GPT-4, you could probably tell it if you're uncertain about what to do next, ask the user for help. And it probably would be pretty good at that. I've had to write a lot of integration tests in my engineering days and like the dome. Alessio: They might be over. Yeah, I hope so. I hope so. I don't want to, I don't want to deal with that anymore. I, yeah, I don't want to write them the old way. Yeah. But I'm just thinking like, you know, we had the robots, the TXT for like crawlers. Like I can definitely see the DOM being reshaped a little bit in terms of accessibility. Like sometimes you have to write expats that are like so long just to get to a button. Like there should be a better way to do it. And maybe this will drive the change, you know, making it easier for these models to interact with your website. Sharif: There is the Chrome accessibility tree, which is used by screen readers, but a lot of times it's missing a lot of, a lot of useful information. But like in a perfect world, everything would be perfectly annotated for screen readers and we could just use that. That's not the case. [29:30] GPT4 and MultimodalitySwyx: GPT-4 multimodal, has your buddy, Greg, and do you think that that would solve essentially browser agents or desktop agents? Sharif: Greg has not come through yet, unfortunately. But it would make things a lot easier, especially for graphically heavy web pages. So for example, you were using Yelp and like using the map view, it would make a lot of sense to use something like that versus a text based input. Where, how do you serialize a map into text? It's kind of hard to do that. So for more complex web pages, that would make it a lot easier. You get a lot more context to the model. I mean, it seems like that multimodal input is very dense in the sense that it can read text and it can read it really, really well. So you could probably give it like a PDF and it would be able to extract all the text and summarize it. So if it can do that, it could probably do anything on any webpage. Swyx: Yeah. And given that you have some experience integrating Clip with language models, how would you describe how different GPT-4 is compared to that stuff? Sharif: Yeah. Clip is entirely different in the sense that it's really just good at putting images and text into the same latent space. And really the only thing that's useful for is similarity and clustering. Swyx: Like literally the same energy, right? Sharif: Yeah. Swyx: Yeah. And then there's Blip and Blip2. I don't know if you like those. Sharif: Yeah. Blip2 is a lot better. There's actually a new project called, I think, Mini GPT-4. Swyx: Yes. It was just out today. Sharif: Oh, nice. Yeah. It's really cool. It's actually really good. I think that one is based on the Lama model, but yeah, that's, that's like another. Host: It's Blip plus Lama, right? So they, they're like running through Blip and then have Lama ask your, interpret your questions so that you do visual QA. Sharif: Oh, that's cool. That's really clever. Yeah. Ensemble models are really useful. Host: Well, so I was trying to articulate, cause that was, that's, there's two things people are talking about today. You have to like, you know, the moment you wake up, you open Hacker News and go like, all right, what's, what's the new thing today? One is Red Pajama. And then the other one is Mini GPT-4. So I was trying to articulate like, why is this not GPT-4? Like what is missing? And my only conclusion was it just doesn't do OCR yet. But I wonder if there's anything core to this concept of multimodality that you have to train these things together. Like what does one model doing all these things do that is separate from an ensemble of models that you just kind of duct tape together? Sharif: It's a good question. This is pretty related to interoperability. Like how do we understand that? Or how, how do we, why do models trained on different modalities within the same model perform better than two models perform or train separately? I can kind of see why that is the case. Like, it's kind of hard to articulate, but when you have two different models, you get the reasoning abilities of a language model, but also like the text or the vision understanding of something like Clip. Whereas Clip clearly lacks the reasoning abilities, but if you could somehow just put them both in the same model, you get the best of both worlds. There were even cases where I think the vision version of GPT-4 scored higher on some tests than the text only version. So like there might even be some additional learning from images as well. Swyx: Oh yeah. Well, uh, the easy answer for that was there was some chart in the test. That wasn't translated. Oh, when I read that, I was like, Oh yeah. Okay. That makes sense. Sharif: That makes sense. I thought it'd just be like, it sees more of the world. Therefore it has more tokens. Swyx: So my equivalent of this is I think it's a well-known fact that adding code to a language model training corpus increases its ability to do language, not just with code. So, the diversity of datasets that represent some kind of internal logic and code is obviously very internally logically consistent, helps the language model learn some internal structure. Which I think, so, you know, my ultimate test for GPT-4 is to show the image of like, you know, is this a pipe and ask it if it's a pipe or not and see what it does. Sharif: Interesting. That is pretty cool. Yeah. Or just give it a screenshot of your like VS code editor and ask it to fix the bug. Yeah. That'd be pretty wild if it could do that. Swyx: That would be adult AGI. That would be, that would be the grownup form of AGI. [33:30] Sharif’s Startup ManualSwyx: On your website, you have this, um, startup manual where you give a bunch of advice. This is fun. One of them was that you should be shipping to production like every two days, every other day. This seems like a great time to do it because things change every other day. But maybe, yeah, tell some of our listeners a little bit more about how you got to some of these heuristics and you obviously build different projects and you iterate it on a lot of things. Yeah. Do you want to reference this? Sharif: Um, sure. Yeah, I'll take a look at it. Swyx: And we'll put this in the show notes, but I just wanted you to have the opportunity to riff on this, this list, because I think it's a very good list. And what, which one of them helped you for Lexica, if there's anything, anything interesting. Sharif: So this list is, it's pretty funny. It's mostly just like me yelling at myself based on all the mistakes I've made in the past and me trying to not make them again. Yeah. Yeah. So I, the first one is like, I think the most important one is like, try when you're building a product, try to build the smallest possible version. And I mean, for Lexica, it was literally a, literally one screen in the react app where a post-process database, and it just showed you like images. And I don't even know if the first version had search. Like I think it did, but I'm not sure. Like, I think it was really just like a grid of images that were randomized, but yeah, don't build the absolute smallest thing that can be considered a useful application and ship it for Lexica. That was, it helps me write better prompts. That's pretty useful. It's not that useful, but it's good enough. Don't fall into the trap of intellectual indulgence with over-engineering. I think that's a pretty important one for myself. And also anyone working on new things, there's often times you fall into the trap of like thinking you need to add more and more things when in reality, like the moment it's useful, you should probably get in the hands of your users and they'll kind of set the roadmap for you. I know this has been said millions of times prior, but just, I think it's really, really important. And I think if I'd spent like two months working on Lexica, adding a bunch of features, it wouldn't have been anywhere as popular as it was if I had just released the really, really boiled down version alongside the stable diffusion release. Yeah. And then there are a few more like product development doesn't start until you launch. Think of your initial product as a means to get your users to talk to you. It's also related to the first point where you really just want people using something as quickly as you can get that to happen. And then a few more are pretty interesting. Create a product people love before you focus on growth. If your users are spontaneously telling other people to use your product, then you've built something people love. Swyx: So this is pretty, it sounds like you've internalized Paul Graham's stuff a lot. Yeah. Because I think he said stuff like that. Sharif: A lot of these are just probably me taking notes from books I found really interesting or like PG essays that were really relevant at the time. And then just trying to not forget them. I should probably read this list again. There's some pretty personalized advice for me here. Oh yeah. One of my favorite ones is, um, don't worry if what you're building doesn't sound like a business. Nobody thought Facebook would be a $500 billion company. It's easy to come up with a business model. Once you've made something people want, you can even make pretty web forms and turn that into a 200 person company. And then if you click the link, it's to LinkedIn for type form, which is now, uh, I think they're like an 800 person company or something like that. So they've grown quite a bit. There you go. Yeah. Pretty web forms are pretty good business, even though it doesn't sound like it. Yeah. It's worth a billion dollars. [38:30] Lexica Aperture V1/2/3Swyx: One way I would like to tie that to the history of Lexica, which we didn't go over, which was just walk us through like Aperture V1, V2, V3, uh, which you just released last week. And how maybe some of those principles helped you in that journey.Sharif: Yeah. So, um, V1 was us trying to create a very photorealistic version of our model of Sable to Fusion. Uh, V1 actually didn't turn out to be that popular. It turns out people loved not generating. Your marketing tweets were popular. They were quite popular. So I think at the time you couldn't get Sable to Fusion to generate like photorealistic images that were consistent with your prompt that well. It was more so like you were sampling from this distribution of images and you could slightly pick where you sampled from using your prompt. This was mostly just because the clip text encoder is not the best text encoder. If you use a real language model, like T5, you get much better results. Like the T5 XXL model is like a hundred times larger than the clip text encoder for Sable to Fusion 1.5. So you could kind of steer it into like the general direction, but for more complex prompts, it just didn't work. So a lot of our users actually complained that they preferred the 1.5, Sable to Fusion 1.5 model over the Aperture model. And it was just because a lot of people were using it to create like parts and like really weird abstract looking pictures that didn't really work well with the photorealistic model trained solely on images. And then for V2, we kind of took that into consideration and then just trained it more on a lot of the art images on Lexica. So we took a lot of images that were on Lexica that were art, used that to train aesthetic models that ranked art really well, and then filtered larger sets to train V2. And then V3 is kind of just like an improved version of that with much more data. I'm really glad we didn't spend too much time on V1. I think we spent about one month working on it, which is a lot of time, but a lot of the things we learned were useful for training future versions. Swyx: How do you version them? Like where do you decide, okay, this is V2, this is V3? Sharif: The versions are kind of weird where you can't really use semantic versions because like if you have a small update, you usually just make that like V2. Versions are kind of used for different base models, I'd say. So if you have each of the versions were a different base model, but we've done like fine tunes of the same version and then just release an update without incrementing the version. But I think when there's like a clear change between running the same prompt on a model and you get a different image, that should probably be a different version. [40:00] Request for AI Startup - LLM ToolsAlessio: So the startup manual was the more you can actually do these things today to make it better. And then you have a whole future page that has tips from, you know, what the series successor is going to be like to like why everyone's genome should be sequenced. There's a lot of cool stuff in there. Why do we need to develop stimulants with shorter half-lives so that we can sleep better. Maybe talk a bit about, you know, when you're a founder, you need to be focused, right? So sometimes there's a lot of things you cannot build. And I feel like this page is a bit of a collection of these. Like, yeah. Are there any of these things that you're like, if I were not building Lexica today, this is like a very interesting thing. Sharif: Oh man. Yeah. There's a ton of things that I want to build. I mean, off the top of my head, the most exciting one would be better tools for language models. And I mean, not tools that help us use language models, but rather tools for the language models themselves. So things like giving them access to browsers, giving them access to things like payments and credit cards, giving them access to like credit cards, giving them things like access to like real world robots. So like, it'd be cool if you could have a Boston dynamic spot powered by a language model reasoning module and you would like to do things for you, like go and pick up your order, stuff like that. Entirely autonomously given like high level commands. That'd be like number one thing if I wasn't working on Lexica. [40:00] Sequencing your GenomeAnd then there's some other interesting things like genomics I find really cool. Like there's some pretty cool things you can do with consumer genomics. So you can export your genome from 23andMe as a text file, like literally a text file of your entire genome. And there is another tool called Prometheus, I think, where you upload your 23andMe text file genome and then they kind of map specific SNPs that you have in your genome to studies that have been done on those SNPs. And it tells you really, really useful things about yourself. Like, for example, I have the SNP for this thing called delayed sleep phase disorder, which makes me go to sleep about three hours later than the general population. So like I used to always be a night owl and I never knew why. But after using Prometheus it pretty much tells you, oh, you have the specific genome for specific SNP for DSPS. It's like a really tiny percentage of the population. And it's like something you should probably know about. And there's a bunch of other things. It tells you your likelihood for getting certain diseases, for certain cancers, oftentimes, like even weird personality traits. There's one for like, I have one of the SNPs for increased risk taking and optimism, which is pretty weird. That's an actual thing. Like, I don't know how. This is the founder gene. You should sequence everybody. It's pretty cool. And it's like, it's like $10 for Prometheus and like 70 bucks for 23andMe. And it explains to you how your body works and like the things that are different from you or different from the general population. Wow. Highly recommend everyone do it. Like if you're, if you're concerned about privacy, just purchase a 23andMe kit with a fake name. You don't have to use your real name. I didn't use my real name. Swyx: It's just my genes. Worst you can do is clone me. It ties in with what you were talking about with, you know, we want the future to be like this. And like people are building uninspired B2B SaaS apps and you and I had an exchange about this. [42:00] Believe in Doing Great ThingsHow can we get more people to believe they can do great things? Sharif: That's a good question. And I like a lot of the things I've been working on with GP3. It has been like trying to solve this by getting people to think about more interesting ideas. I don't really know. I think one is just like the low effort version of this is just putting out really compelling demos and getting people inspired. And then the higher effort version is like actually building the products yourself and getting people to like realize this is even possible in the first place. Like I think the baby AGI project and like the GPT Asian projects on GitHub are like in practice today, they're not super useful, but I think they're doing an excellent job of getting people incredibly inspired for what can be possible with language models as agents. And also the Stanford paper where they had like the mini version of Sims. Yeah. That one was incredible. That was awesome. Swyx: It was adorable. Did you see the part where they invented day drinking? Sharif: Oh, they did? Swyx: Yeah. You're not supposed to go to these bars in the afternoon, but they were like, we're going to go anyway. Nice. Sharif: That's awesome. Yeah. I think we need more stuff like that. That one paper is probably going to inspire a whole bunch of teams to work on stuff similar to that. Swyx: And that's great. I can't wait for NPCs to actually be something that you talk to in a game and, you know, have their own lives and you can check in and, you know, they would have their own personalities as well. Sharif: Yeah. I was so kind of off topic. But I was playing the last of us part two and the NPCs in that game are really, really good. Where if you like, point a gun at them and they'll beg for their life and like, please, I have a family. And like when you kill people in the game, they're like, oh my God, you shot Alice. Like they're just NPCs, but they refer to each other by their names and like they plead for their lives. And this is just using regular conditional rules on NPC behavior. Imagine how much better it'd be if it was like a small GPT-4 agent running in every NPC and they had the agency to make decisions and plead for their lives. And I don't know, you feel way more guilty playing that game. Alessio: I'm scared it's going to be too good. I played a lot of hours of Fallout. So I feel like if the NPCs were a lot better, you would spend a lot more time playing the game. Yeah. [44:30] Lightning RoundLet's jump into lightning round. First question is your favorite AI product. Sharif: Favorite AI product. The one I use the most is probably ChatGPT. The one I'm most excited about is, it's actually a company in AI grants. They're working on a version of VS code. That's like an entirely AI powered cursor, yeah. Cursor where you would like to give it a prompt and like to iterate on your code, not by writing code, but rather by just describing the changes you want to make. And it's tightly integrated into the editor itself. So it's not just another plugin. Swyx: Would you, as a founder of a low code prompting-to-code company that pivoted, would you advise them to explore some things or stay away from some things? Like what's your learning there that you would give to them?Sharif: I would focus on one specific type of code. So if I'm building a local tool, I would try to not focus too much on appealing developers. Whereas if I was building an alternative to VS code, I would focus solely on developers. So in that, I think they're doing a pretty good job focusing on developers. Swyx: Are you using Cursor right now? Sharif: I've used it a bit. I haven't converted fully, but I really want to. Okay. It's getting better really, really fast. Yeah. Um, I can see myself switching over sometime this year if they continue improving it. Swyx: Hot tip for, for ChatGPT, people always say, you know, they love ChatGPT. Biggest upgrade to my life right now is the, I forked a menu bar app I found on GitHub and now I just have it running in a menu bar app and I just do command shift G and it pops it up as a single use thing. And there's no latency because it just always is live. And I just type, type in the thing I want and then it just goes away after I'm done. Sharif: Wow. That's cool. Big upgrade. I'm going to install that. That's cool. Alessio: Second question. What is something you thought would take much longer, but it's already here? Like what, what's your acceleration update? Sharif: Ooh, um, it would take much longer, but it's already here. This is your question. Yeah, I know. I wasn't prepared. Um, so I think it would probably be kind of, I would say text to video. Swyx: Yeah. What's going on with that? Sharif: I think within this year, uh, by the end of this year, we'll have like the jump between like the original DALL-E one to like something like mid journey. Like we're going to see that leap in text to video within the span of this year. Um, it's not already here yet. So I guess the thing that surprised me the most was probably the multi-modality of GPT four in the fact that it can technically see things, which is pretty insane. Swyx: Yeah. Is text to video something that Aperture would be interested in? Sharif: Uh, it's something we're thinking about, but it's still pretty early. Swyx: There was one project with a hand, um, animation with human poses. It was also coming out of Facebook. I thought that was a very nice way to accomplish text to video while having a high degree of control. I forget the name of that project. It was like, I think it was like drawing anything. Swyx: Yeah. It sounds familiar. Well, you already answered a year from now. What will people be most surprised by? Um, and maybe the, uh, the usual requests for startup, you know, what's one thing you will pay for if someone built it? Sharif: One thing I would pay for if someone built it. Um, so many things, honestly, I would probably really like, um, like I really want people to build more, uh, tools for language models, like useful tools, give them access to Chrome. And I want to be able to give it a task. And then just, it goes off and spins up a hundred agents that perform that task. And like, sure. Like 80 of them might fail, but like 20 of them might kind of succeed. That's all you really need. And they're agents. You can spin up thousands of them. It doesn't really matter. Like a lot of large numbers are on your side. So that'd be, I would pay a lot of money for that. Even if it was capable of only doing really basic tasks, like signing up for a SAS tool and booking a call or something. If you could do even more things where it could have handled the email, uh, thread and like get the person on the other end to like do something where like, I don't even have to like book the demo. They just give me access to it. That'd be great. Yeah. More, more. Like really weird language model tools would be really fun.Swyx: Like our chat, GPT plugins, a step in the right direction, or are you envisioning something else? Sharif: I think GPT, chat GPT plugins are great, but they seem to only have right-only access right now. I also want them to have, I want these like theoretical agents to have right access to the world too. So they should be able to perform actions on web browsers, have their own email inbox, and have their own credit card with their own balance. Like take it, send emails to people that might be useful in achieving their goal. Ask them for help. Be able to like sign up and register for accounts on tools and services and be able to like to use graphical user interfaces really, really well. And also like to phone home if they need help. Swyx: You just had virtual employees. You want to give them a Brex card, right? Sharif: I wouldn't be surprised if, a year from now there was Brex GPT or it's like Brex cards for your GPT agents. Swyx: I mean, okay. I'm excited by this. Yeah. Kind of want to build it. Sharif: You should. Yeah. Alessio: Well, just to wrap up, we always have like one big takeaway for people, like, you know, to display on a signboard for everyone to see what is the big message to everybody. Sharif: Yeah. I think the big message to everybody is you might think that a lot of the time the ideas you have have already been done by someone. And that may be the case, but a lot of the time the ideas you have are actually pretty unique and no one's ever tried them before. So if you have weird and interesting ideas, you should actually go out and just do them and make the thing and then share that with the world. Cause I feel like we need more people building weird ideas and less people building like better GPT search for your documentation. Host: There are like 10 of those in the recent OST patch. Well, thank you so much. You've been hugely inspiring and excited to see where Lexica goes next. Sharif: Appreciate it. Thanks for having me. Get full access to Latent.Space at www.latent.space/subscribe

4 ways to have healthy conversations about race | Afrika Afeni Mills

From TED Talks Daily

Learning how to have productive conversations about race is a necessary part of the human experience. Educator Afrika Afeni Mills says the best place to start is in the classroom -- because the earlier these skills are taught, the fewer biases there are to unlearn. She shares four actionable lessons to help people overcome their fear and take on these conversations at any age.Learn more about our flagship conference happening this April at attend.ted.com/podcast Hosted on Acast. See acast.com/privacy for more information.

Dani Austin & Jordan Ramirez: How They Got To $40 Million+ Year As Influencers

From My First Million

Episode 452: Shaan Puri (@ShaanVP) talks to Dani Austin and her husband Jordan Ramirez about working together, Dani's experience with hair loss and the business she created to solve it, how they monetize as influencers, and more. Want to see more MFM? Subscribe to the MFM YouTube channel here. Check Out Sam's Stuff: * Hampton * Ideation Bootcamp * Copy That Check Out Shaan's Stuff: * Power Writing Course * Daily Newsletter ----- Links: * Dani Austin * Dani Austin Ramirez Instagram * @thedaniaustin (TikTok) * Divi * @diviofficial (Instagram) * [email protected] (for employment opportunities) * Do you love MFM and want to see Sam and Shaan's smiling faces? Subscribe to our Youtube channel. ------ Show Notes: (01:40) - Introductions (07:40) - How Dani got into the influencer space (13:55) - Dani's hair loss (27:55) - Branding (30:00) - Mistakes influencers make (35:55) - Why does Jordan listen to the pod (40:10) - Advice for up and coming influencers (49:30) - How they make money (55:30) - User Generated Content (58:30) - What's next ------ Past guests on My First Million include Rob Dyrdek, Hasan Minhaj, Balaji Srinivasan, Jake Paul, Dr. Andrew Huberman, Gary Vee, Lance Armstrong, Sophia Amoruso, Ariel Helwani, Ramit Sethi, Stanley Druckenmiller, Peter Diamandis, Dharmesh Shah, Brian Halligan, Marc Lore, Jason Calacanis, Andrew Wilkinson, Julian Shapiro, Kat Cole, Codie Sanchez, Nader Al-Naji, Steph Smith, Trung Phan, Nick Huber, Anthony Pompliano, Ben Askren, Ramon Van Meer, Brianne Kimmel, Andrew Gazdecki, Scott Belsky, Moiz Ali, Dan Held, Elaine Zelby, Michael Saylor, Ryan Begelman, Jack Butcher, Reed Duchscher, Tai Lopez, Harley Finkelstein, Alexa von Tobel, Noah Kagan, Nick Bare, Greg Isenberg, James Altucher, Randy Hetrick and more. ----- Additional episodes you might enjoy: • #224 Rob Dyrdek - How Tracking Every Second of His Life Took Rob Drydek from 0 to $405M in Exits • #209 Gary Vaynerchuk - Why NFTS Are the Future • #178 Balaji Srinivasan - Balaji on How to Fix the Media, Cloud Cities & Crypto * #169 - How One Man Started 5, Billion Dollar Companies, Dan Gilbert's Empire, & Talking With Warren Buffett • ​​​​#218 - Why You Should Take a Think Week Like Bill Gates • Dave Portnoy vs The World, Extreme Body Monitoring, The Future of Apparel Retail, "How Much is Anthony Pompliano Worth?", and More • How Mr Beast Got 100M Views in Less Than 4 Days, The $25M Chrome Extension, and More

How Psilocybin Can Rewire Our Brain, Its Therapeutic Benefits & Its Risks

From Huberman Lab

In this episode, I discuss what psilocybin is (chemically) and how it works at the cellular and neural circuit level to trigger neuroplasticity, which is our brain’s ability to rewire itself in ways that lead to long-lasting shifts in our emotional, cognitive and behavioral patterns and abilities. I discuss the emerging clinical trial evidence for the use of psilocybin in the treatment of depression, addictions and other psychiatric challenges. I explain the typical duration and phases of a psilocybin journey, the different categories of dosages often used and I explain the importance of set, setting and support when using psychedelics. I explain which groups of people place themselves at great risk by taking psilocybin as well as groups that could benefit, and I highlight the rapidly changing legal and medical landscape around psilocybin. This episode is a thorough exploration of psilocybin from the scientific and clinical literature perspective and ought to be of interest to anyone curious about psilocybin, mental health, neuroplasticity and/or psychedelics more generally. For the full show notes, visit hubermanlab.com. Thank you to our sponsors AG1: https://athleticgreens.com/huberman LMNT: https://drinklmnt.com/hubermanlab Waking Up: https://wakingup.com/huberman Momentous: https://livemomentous.com/huberman Timestamps (00:00:00) Psilocybin, Legal Considerations (00:08:48) Sponsors: LMNT & Waking Up (00:12:00) Psilocybin Becomes Psilocin in the Gut, Serotonin (00:17:00) The Serotonin 2A Receptor, Therapeutic Outcomes SSRIs vs. Psilocybin (00:21:40) Serotonin Receptor Expression; Visual Hallucinations & Eyes Closed (00:26:02) Sponsor: AG1 (00:27:21) Safety & Cautions for Specific Patient Populations (00:30:28) Psilocybin, “Magic Mushrooms” Dosing, Micro-Dosing, “Heroic Doses” (00:36:21) Psychedelic Journey: Set, Setting & Support (00:43:43) Music & the Psilocybin Journey; Duration of Effects (00:48:58) Psilocybin & the Brain: Subjective Experiences, Perception (00:59:48) Brain Networks & Therapeutic Outcomes (01:05:23) Creativity; Music, Emotionality & Psychedelic Journeys (01:12:39) Depression & Psychedelics as Neuroplasticity “Wedge” (01:16:53) Positive Psychedelic Journeys, Unity, “Oceanic Boundlessness” (01:25:23) “Bad Trips”, Anxiety & Physiological Sighs (01:32:57) Therapeutic Use of Psilocybin (01:36:11) Neuroplasticity, Structural Brain Changes & Psilocybin (01:48:08) Psychedelics: Therapeutic Breakthroughs & Depression (01:56:37) Combining Psilocybin Therapy & Talk Therapy, Antidepressant Effects (02:03:11) Psilocybin Experience & Mental Health (2:06:42) Zero-Cost Support, YouTube Feedback, Spotify & Apple Reviews, Sponsors, Momentous, Neural Network Newsletter, Social Media Disclaimer Learn more about your ad choices. Visit megaphone.fm/adchoices

"Bill Hader"

From SmartLess

Things we discuss with the insanely talented Bill Hader:   Portal-to-portal A hat on a hat Pot roast for breakfast Nut allergies How high can you jump? Did your parents listen to Charo? It's SmartLess - here we go! Please support us by supporting our sponsors.

#625 - Matthew Hussey - #1 Dating Coach Reveals The Red Flags Everyone Should Know

From Modern Wisdom

Matthew Hussey is the world's best known female dating coach, aYouTuber, public speaker and an author. Choosing your ideal romantic partner is one of the most important choices you will make. However, men and women seriously struggle to understand each other, perhaps more than ever. Thankfully Matthew has spent 15 years coaching millions of women through their relationship struggles. Expect to learn what the women Matthew coaches actually want in a man, whether the dating landscape has actually changed that much over the last 15 years, how to build deep and lasting attraction, why more women are opting to not have children, what men often misunderstand about women's mindsets, whether men should be more vulnerable with their partners, how to present your best self on your online dating profile and much more...  Sponsors: Get 5 Free Travel Packs, Free Liquid Vitamin D and more from Athletic Greens at https://athleticgreens.com/wisdom (discount automatically applied) Get a Free Sample Pack of all LMNT Flavours with your first box at https://www.drinklmnt.com/modernwisdom (automatically applied at checkout) Get 20% discount & free shipping on your Lawnmower 4.0 at https://manscaped.com/modernwisdom (use code MODERNWISDOM) Extra Stuff: Check out Matthew's website - https://www.howtogettheguy.com/ Subscribe to Matthew's YouTube Channel - https://www.youtube.com/channel/UC9HGzFGt7BLmWDqooUbWGBg  Get my free Reading List of 100 books to read before you die → https://chriswillx.com/books/ To support me on Patreon (thank you): https://www.patreon.com/modernwisdom - Get in touch. Instagram: https://www.instagram.com/chriswillx Twitter: https://www.twitter.com/chriswillx YouTube: https://www.youtube.com/modernwisdompodcast Email: https://chriswillx.com/contact/  Learn more about your ad choices. Visit megaphone.fm/adchoices

#375 – David Pakman: Politics of Trump, Biden, Bernie, AOC, Socialism & Wokeism

From Lex Fridman Podcast

David Pakman is a left-wing progressive political commentator and host of The David Pakman Show. Please support this podcast by checking out our sponsors: – Eight Sleep: https://www.eightsleep.com/lex to get special savings – Shopify: https://shopify.com/lex to get free trial – ExpressVPN: https://expressvpn.com/lexpod to get 3 months free EPISODE LINKS: David’s Twitter: https://twitter.com/dpakman David’s YouTube: https://youtube.com/@thedavidpakmanshow David’s Instagram: https://instagram.com/david.pakman David’s Website: https://davidpakman.com/ David’s Subreddit: https://reddit.com/r/thedavidpakmanshow/ Books mentioned: 1. The Rebel and the Kingdom: https://amzn.to/3p9pLDt 2. Saving Time: https://amzn.to/3pejiH3 3. Endurance: https://amzn.to/419ez6O PODCAST INFO: Podcast website: https://lexfridman.com/podcast Apple Podcasts: https://apple.co/2lwqZIr Spotify: https://spoti.fi/2nEwCF8 RSS: https://lexfridman.com/feed/podcast/ YouTube Full Episodes: https://youtube.com/lexfridman YouTube Clips: https://youtube.com/lexclips SUPPORT & CONNECT: – Check out the sponsors above, it’s the best way to support this podcast – Support on Patreon: https://www.patreon.com/lexfridman – Twitter: https://twitter.com/lexfridman – Instagram: https://www.instagram.com/lexfridman – LinkedIn: https://www.linkedin.com/in/lexfridman – Facebook: https://www.facebook.com/lexfridman – Medium: https://medium.com/@lexfridman OUTLINE: Here’s the timestamps for the episode. On some podcast players you should be able to click the timestamp to jump to that time. (00:00) – Introduction (06:42) – Political ideologies (16:10) – Twitter drama (31:07) – Biden vs Trump (38:07) – AOC (40:47) – Bernie Sanders (48:55) – Donald Trump: Pros and cons (1:14:46) – Joe Biden: Pros and cons (1:21:08) – Hate for politicians (1:37:29) – RFK Jr (1:50:48) – Republican voters (1:57:30) – Conspiracy theories (2:02:26) – January 6th (2:11:31) – Hunter Biden’s laptop (2:15:46) – Tucker Carlson (2:18:44) – Wokeism and censorship (2:37:11) – ChatGPT and universities (2:43:10) – Libertarianism (2:46:47) – Elon Musk (2:55:14) – Dealing with attacks (2:59:56) – Truth (3:05:47) – Israel and Palestine (3:09:41) – Ukraine war (3:17:42) – Books (3:28:22) – Mortality (3:30:33) – Advice for young people (3:32:05) – Hope for the future

#624 - Ashley Cain - How To Overcome The Toughest Moment Of Your Life

From Modern Wisdom

Ashley Cain is a former professional footballer, reality TV star, endurance athlete and cancer charity fundraiser. Losing a child is the most painful experience parents ever face. But observing your child slowly passing away is a special kind of torture. What do you do when you’re faced with so much pain and trauma you stop wanting to exist? And how can you move beyond this to learn to live again. Expect to learn what Ashley’s most profound challenges in recent years were, how he managed to find any hope in severe darkness, his advice for anyone dealing with a sick family member, how he found purpose in the wake of his daughters passing, why he fought 6 police officers who were crying, his strategy for processing grief and much more... Sponsors: Get 10% discount on all Gymshark’s products at https://bit.ly/sharkwisdom (use code: MW10) Get 20% OFF with our code MODERNWISDOM at https://calderalab.com/modernwisdom to unlock your youthful glow and be ready for summer with Caldera + Lab! #ad #calderalabpod Get 15% discount on Bon Charge’s red light therapy devices at https://boncharge.com/modernwisdom (use code: MW15) Extra Stuff: Follow Ashley on Instagram - https://www.instagram.com/mrashleycain/  Get my free Reading List of 100 books to read before you die → https://chriswillx.com/books/ To support me on Patreon (thank you): https://www.patreon.com/modernwisdom - Get in touch. Instagram: https://www.instagram.com/chriswillx Twitter: https://www.twitter.com/chriswillx YouTube: https://www.youtube.com/modernwisdompodcast Email: https://chriswillx.com/contact/  Learn more about your ad choices. Visit megaphone.fm/adchoices

How to fight a squatting goat

From Planet Money

Back in 2005, Burt Banks inherited a plot of old family land in Delaware. But when it came time to sell it, he ran into a problem: his neighbor had a goat pen, and about half of it crossed over onto his property. Burt asked the goats' owner to move the pen, but when neighborly persuasion failed to get the job done, he changed his strategy. He sued her. And that is when things got complicated.Protecting private property is one of the fundamental jobs of the American legal system. If you hold a deed saying you own a plot of land, it's your land. End of story. Right?But, as Burt would soon learn, the law can get really complicated when it comes to determining who actually owns something. And when goats are involved ... anything can happen.This episode was produced by Willa Rubin and Dylan Sloan and edited by Molly Messick. It was fact-checked by Sierra Juarez. Katherine Silva engineered this episode. Jess Jiang is Planet Money's acting executive producer.Help support Planet Money and get bonus episodes by subscribing to Planet Money+ in Apple Podcasts or at plus.npr.org/planetmoney.Always free at these links: Apple Podcasts, Spotify, Google Podcasts, NPR One or anywhere you get podcasts.Find more Planet Money: Facebook / Instagram / TikTok / Our weekly Newsletter.Music: "Fruit Salad," "Keep With It" and "Purple Sun." Learn more about sponsor message choices: podcastchoices.com/adchoicesNPR Privacy Policy

E127: Presidential Candidate Robert F. Kennedy Jr. in conversation with the Besties

From All-In with Chamath, Jason, Sacks & Friedberg

(0:00) Bestie intros! (0:49) Jason and Sacks intro Robert F. Kennedy Jr. (3:46) Foreign policy: Ukraine / Russia (17:17) Foreign policy: Taiwan / China (18:57) Government spending: Fiscal responsibility, where to cut budget, debt ceiling (33:22) US Govt Intelligence Agencies: "Deep State," increasing accountability, "agency capture" (46:04) COVID: mishandling, more "agency capture," vaccine policy (55:10) Broader thoughts on vaccines in general (1:05:54) Energy policy: thoughts on nuclear (1:15:29) Culture wars: trans issues, CRT in schools, public vs charter schools (1:23:09) Media: declining trust, misaligned incentives, conflict of interest with large advertisers (1:30:07) Mainstream media coverage, ABC News debacle, evolving with new information, money in politics (1:40:37) The Besties do a post-interview debrief (1:57:30) Announcing All-In Summit 2023! Follow the besties: https://twitter.com/chamath https://linktr.ee/calacanis https://twitter.com/DavidSacks https://twitter.com/friedberg Follow Robert F. Kennedy Jr: https://twitter.com/RobertKennedyJr Follow the pod: https://twitter.com/theallinpod https://linktr.ee/allinpodcast Intro Music Credit: https://rb.gy/tppkzl https://twitter.com/yung_spielburg Intro Video Credit: https://twitter.com/TheZachEffect

#1982 - John Hennessey

From Joe Rogan Experience

John Hennessey is the founder and CEO of Hennessey Performance Engineering, Hennessey Special Vehicles, and the Tuner School. www.hennesseyperformance.com Learn more about your ad choices. Visit podcastchoices.com/adchoices

No Moat: Closed AI gets its Open Source wakeup call — ft. Simon Willison

From Latent Space: The AI Engineer Podcast

It’s now almost 6 months since Google declared Code Red, and the results — Jeff Dean’s recap of 2022 achievements and a mass exodus of the top research talent that contributed to it in January, Bard’s rushed launch in Feb, a slick video showing Google Workspace AI features and confusing doubly linked blogposts about PaLM API in March, and merging Google Brain and DeepMind in April — have not been inspiring. Google’s internal panic is in full display now with the surfacing of a well written memo, written by software engineer Luke Sernau written in early April, revealing internal distress not seen since Steve Yegge’s infamous Google Platforms Rant. Similar to 2011, the company’s response to an external challenge has been to mobilize the entire company to go all-in on a (from the outside) vague vision.Google’s misfortunes are well understood by now, but the last paragraph of the memo: “We have no moat, and neither does OpenAI”, was a banger of a mic drop.Combine this with news this morning that OpenAI lost $540m last year and will need as much as $100b more funding (after the complex $10b Microsoft deal in Jan), and the memo’s assertion that both Google and OpenAI have “no moat” against the mighty open source horde have gained some credibility in the past 24 hours.Many are criticising this memo privately:* A CEO commented to me yesterday that Luke Sernau does not seem to work in AI related parts of Google and “software engineers don’t understand moats”. * Emad Mostaque, himself a perma-champion of open source and open models, has repeatedly stated that “Closed models will always outperform open models” because closed models can just wrap open ones.* Emad has also commented on the moats he does see: “Unique usage data, Unique content, Unique talent, Unique product, Unique business model”, most of which Google does have, and OpenAI less so (though it is winning on the talent front)* Sam Altman famously said that “very few to no one is Silicon Valley has a moat - not even Facebook” (implying that moats don’t actually matter, and you should spend your time thinking about more important things)* It is not actually clear what race the memo thinks Google and OpenAI are in vs Open Source. Neither are particularly concerned about running models locally on phones, and they are perfectly happy to let “a crazy European alpha male” run the last mile for them while they build actually monetizable cloud infrastructure.However moats are of intense interest by everybody keen on productized AI, cropping up in every Harvey, Jasper, and general AI startup vs incumbent debate. It is also interesting to take the memo at face value and discuss the searing hot pace of AI progress in open source. We hosted this discussion yesterday with Simon Willison, who apart from being an incredible communicator also wrote a great recap of the No Moat memo. 2,800 have now tuned in on Twitter Spaces, but we have taken the audio and cleaned it up here. Enjoy!Timestamps* [00:00:00] Introducing the Google Memo* [00:02:48] Open Source > Closed?* [00:05:51] Running Models On Device* [00:07:52] LoRA part 1* [00:08:42] On Moats - Size, Data* [00:11:34] Open Source Models are Comparable on Data* [00:13:04] Stackable LoRA* [00:19:44] The Need for Special Purpose Optimized Models* [00:21:12] Modular - Mojo from Chris Lattner* [00:23:33] The Promise of Language Supersets* [00:28:44] Google AI Strategy* [00:29:58] Zuck Releasing LLaMA* [00:30:42] Google Origin Confirmed* [00:30:57] Google's existential threat* [00:32:24] Non-Fiction AI Safety ("y-risk")* [00:35:17] Prompt Injection* [00:36:00] Google vs OpenAI* [00:41:04] Personal plugs: Simon and TravisTranscripts[00:00:00] Introducing the Google Memo[00:00:00] Simon Willison: So, yeah, this is a document, which Kate, which I first saw at three o'clock this morning, I think. It claims to be leaked from Google. There's good reasons to believe it is leaked from Google, and to be honest, if it's not, it doesn't actually matter because the quality of the analysis, I think stands alone.[00:00:15] If this was just a document by some anonymous person, I'd still think it was interesting and worth discussing. And the title of the document is We Have No Moat and neither does Open ai. And the argument it makes is that while Google and OpenAI have been competing on training bigger and bigger language models, the open source community is already starting to outrun them, given only a couple of months of really like really, really serious activity.[00:00:41] You know, Facebook lama was the thing that really kicked us off. There were open source language models like Bloom before that some G P T J, and they weren't very impressive. Like nobody was really thinking that they were. Chat. G P T equivalent Facebook Lama came out in March, I think March 15th. And was the first one that really sort of showed signs of being as capable maybe as chat G P T.[00:01:04] My, I don't, I think all of these models, they've been, the analysis of them has tend to be a bit hyped. Like I don't think any of them are even quite up to GT 3.5 standards yet, but they're within spitting distance in some respects. So anyway, Lama came out and then, Two weeks later Stanford Alpaca came out, which was fine tuned on top of Lama and was a massive leap forward in terms of quality.[00:01:27] And then a week after that Vicuna came out, which is to this date, the the best model I've been able to run on my own hardware. I, on my mobile phone now, like, it's astonishing how little resources you need to run these things. But anyway, the the argument that this paper made, which I found very convincing is it only took open source two months to get this far.[00:01:47] It's now every researcher in the world is kicking it on new, new things, but it feels like they're being there. There are problems that Google has been trying to solve that the open source models are already addressing, and really how do you compete with that, like with your, it's closed ecosystem, how are you going to beat these open models with all of this innovation going on?[00:02:04] But then the most interesting argument in there is it talks about the size of models and says that maybe large isn't a competitive advantage, maybe actually a smaller model. With lots of like different people fine tuning it and having these sort of, these LoRA l o r a stackable fine tuning innovations on top of it, maybe those can move faster.[00:02:23] And actually having to retrain your giant model every few months from scratch is, is way less useful than having small models that you can tr you can fine tune in a couple of hours on laptop. So it's, it's fascinating. I basically, if you haven't read this thing, you should read every word of it. It's not very long.[00:02:40] It's beautifully written. Like it's, it's, I mean, If you try and find the quotable lines in it, almost every line of it's quotable. Yeah. So, yeah, that's that, that, that's the status of this[00:02:48] Open Source > Closed?[00:02:48] swyx: thing. That's a wonderful summary, Simon. Yeah, there, there's so many angles we can take to this. I, I'll just observe one, one thing which if you think about the open versus closed narrative, Ima Mok, who is the CEO of Stability, has always been that open will trail behind closed, because the closed alternatives can always take.[00:03:08] Learnings and lessons from open source. And this is the first highly credible statement that is basically saying the exact opposite, that open source is moving than, than, than closed source. And they are scared. They seem to be scared. Which is interesting,[00:03:22] Travis Fischer: Travis. Yeah, the, the, the, a few things that, that I'll, I'll, I'll say the only thing which can keep up with the pace of AI these days is open source.[00:03:32] I think we're, we're seeing that unfold in real time before our eyes. And. You know, I, I think the other interesting angle of this is to some degree LLMs are they, they don't really have switching costs. They are going to be, become commoditized. At least that's, that's what a lot of, a lot of people kind of think to, to what extent is it Is it a, a rate in terms of, of pricing of these things?[00:03:55] , and they all kind of become roughly the, the, the same in, in terms of their, their underlying abilities. And, and open source is gonna, gonna be actively pushing, pushing that forward. And, and then this is kind of coming from, if it is to be believed the kind of Google or an insider type type mentality around you know, where is the actual competitive advantage?[00:04:14] What should they be focusing on? How can they get back in into the game? When you know, when, when, when, when currently the, the, the external view of, of Google is that they're kind of spinning their wheels and they have this code red,, and it's like they're, they're playing catch up already.[00:04:28] Like how could they use the open source community and work with them, which is gonna be really, really hard you know, from a structural perspective given Google's place in the ecosystem. But a, a lot, lot, a lot of jumping off points there.[00:04:42] Alessio Fanelli: I was gonna say, I think the Post is really focused on how do we get the best model, but it's not focused on like, how do we build the best product around it.[00:04:50] A lot of these models are limited by how many GPUs you can get to run them and we've seen on traditional open source, like everybody can use some of these projects like Kafka and like Alaska for free. But the reality is that not everybody can afford to run the infrastructure needed for it.[00:05:05] So I, I think like the main takeaway that I have from this is like, A lot of the moats are probably around just getting the, the sand, so to speak, and having the GPUs to actually serve these models. Because even if the best model is open source, like running it at large scale for an end is not easy and like, it's not super convenient to get a lot, a lot of the infrastructure.[00:05:27] And we've seen that model work in open source where you have. The opensource project, and then you have a enterprise cloud hosted version for it. I think that's gonna look really different in opensource models because just hosting a model doesn't have a lot of value. So I'm curious to hear how people end up getting rewarded to do opensource.[00:05:46] You know, it's, we figured that out in infrastructure, but we haven't figured it out in in Alans[00:05:51] Running Models On Device[00:05:51] Simon Willison: yet. I mean, one thing I'll say is that the the models that you can run on your own devices are so far ahead of what I ever dreamed they would be at this point. Like Vicuna 13 b i i, I, I think is the current best available open mo model that I've played with.[00:06:08] It's derived from Facebook Lama, so you can't use it for commercial purposes yet. But the point about MCK 13 B is it runs in the browser directly on web gpu. There's this amazing web l l M project where you literally, your browser downloaded a two gigabyte file. And it fires up a chat g D style interface and it's quite good.[00:06:27] It can do rap battles between different animals and all of the kind of fun stuff that you'd expect to be able to do the language model running entirely in Chrome canary. It's shocking to me that that's even possible, but that kind of shows that once, once you get to inference, if you can shrink the model down and the techniques for shrinking these models, the, the first one was the the quantization.[00:06:48] Which the Lama CPP project really sort of popularized Matt can by using four bits instead of 16 bit floating point numbers, you can shrink it down quite a lot. And then there was a paper that came out days ago suggesting that you can prune the models and ditch half the model and maintain the same level of quality.[00:07:05] So with, with things like that, with all of these tricks coming together, it's really astonishing how much you can get done on hardware that people actually have in their pockets even.[00:07:15] swyx: Just for completion I've been following all of your posts. Oh, sorry. Yes. I just wanna follow up, Simon. You're, you said you're running a model on your phone. Which model is it? And I don't think you've written it up.[00:07:27] Simon Willison: Yeah, that one's vina. I did, did I write it up? I did. I've got a blog post about how it it, it, it knows who I am, sort of, but it said that I invented a, a, a pattern for living called bear or bunny pattern, which I definitely didn't, but I loved that my phone decided that I did.[00:07:44] swyx: I will hunt for that because I'm not yet running Vic on my phone and I feel like I should and, and as like a very base thing, but I'll, okay.[00:07:52] Stackable LoRA Modules[00:07:52] swyx: Also, I'll follow up two things, right? Like one I'm very interesting and let's, let's talk about that a little bit more because this concept of stackable improvements to models I think is extremely interesting.[00:08:00] Like, I would love to MPM install abilities onto my models, right? Which is really awesome. But the, the first thing thing is under-discussed is I don't get the panic. Like, honestly, like Google has the most moats. I I, I was arguing maybe like three months ago on my blog. Like Google has the most mote out of a lot of people because, hey, we have your calendar.[00:08:21] Hey, we have your email. Hey, we have your you know, Google Docs. Like, isn't that a, a sufficient mode? Like, why are these guys panicking so much? I don't, I still don't get it. Like, Sure open source is running ahead and like, it's, it's on device and whatev, what have you, but they have so much more mode.[00:08:36] Like, what are we talking about here? There's many dimensions to compete on.[00:08:42] On Moats - Size, Data[00:08:42] Travis Fischer: Yeah, there's like one of, one of the, the things that, that the author you know, mentions in, in here is when, when you start to, to, to have the feeling of what we're trailing behind, then you're, you're, you're, you're brightest researchers jump ship and go to OpenAI or go to work at, at, at academia or, or whatever.[00:09:00] And like the talent drain. At the, the level of the, the senior AI researchers that are pushing these things ahead within Google, I think is a serious, serious concern. And my, my take on it's a good point, right? Like, like, like, like what Google has modes. They, they, they're not running outta money anytime soon.[00:09:16] You know, I think they, they do see the level of the, the defensibility and, and the fact that they want to be, I'll chime in the, the leader around pretty much anything. Tech first. There's definitely ha ha have lost that, that, that feeling. Right? , and to what degree they can, they can with the, the open source community to, to get that back and, and help drive that.[00:09:38] You know all of the llama subset of models with, with alpaca and Vicuna, et cetera, that all came from, from meta. Right. Like that. Yeah. Like it's not licensed in an open way where you can build a company on top of it, but is now kind of driving this family of, of models, like there's a tree of models that, that they're, they're leading.[00:09:54] And where is Google in that, in that playbook? Like for a long time they were the one releasing those models being super open and, and now it's just they, they've seem to be trailing and there's, there's people jumping ship and to what degree can they, can they, can they. Close off those wounds and, and focus on, on where, where they, they have unique ability to, to gain momentum.[00:10:15] I think is a core part of my takeaway from this. Yeah.[00:10:19] Alessio Fanelli: And think another big thing in the post is, oh, as long as you have high quality data, like you don't need that much data, you can just use that. The first party data loops are probably gonna be the most important going forward if we do believe that this is true.[00:10:32] So, Databricks. We have Mike Conover from Databricks on the podcast, and they talked about how they came up with the training set for Dolly, which they basically had Databricks employees write down very good questions and very good answers for it. Not every company as the scale to do that. And I think products like Google, they have millions of people writing Google Docs.[00:10:54] They have millions of people using Google Sheets, then millions of people writing stuff, creating content on YouTube. The question is, if you wanna compete against these companies, maybe the model is not what you're gonna do it with because the open source kind of commoditizes it. But how do you build even better data?[00:11:12] First party loops. And that's kind of the hardest thing for startups, right? Like even if we open up the, the models to everybody and everybody can just go on GitHub and. Or hugging face and get the waste to the best model, but get enough people to generate data for me so that I can still make it good. That's, that's what I would be worried about if I was a, a new company.[00:11:31] How do I make that happen[00:11:32] Simon Willison: really quickly?[00:11:34] Open Source Models are Comparable on Data[00:11:34] Simon Willison: I'm not convinced that the data is that big a challenge. So there's this PO project. So the problem with Facebook LAMA is that it's not available for, for commercial use. So people are now trying to train a alternative to LAMA that's entirely on openly licensed data.[00:11:48] And that the biggest project around that is this red pajama project, which They released their training data a few weeks ago and it was 2.7 terabytes. Right? So actually tiny, right? You can buy a laptop that you can fit 2.7 terabytes on. Got it. But it was the same exact data that Facebook, the same thing that Facebook Lamb had been trained on.[00:12:06] Cuz for your base model. You're not really trying to teach it fact about the world. You're just trying to teach it how English and other languages work, how they fit together. And then the real magic is when you fine tune on top of that. That's what Alpaca did on top of Lama and so on. And the fine tuning sets, it looks like, like tens of thousands of examples to kick one of these role models into shape.[00:12:26] And tens of thousands of examples like Databricks spent a month and got the 2000 employees of their company to help kick in and it worked. You've got the open assistant project of crowdsourcing this stuff now as well. So it's achievable[00:12:40] swyx: sore throat. I agree. I think it's a fa fascinating point. Actually, so I've heard through the grapevine then red pajamas model.[00:12:47] Trained on the, the data that they release is gonna be releasing tomorrow. And it's, it's this very exciting time because the, the, there, there's a, there's a couple more models that are coming down the pike, which independently we produced. And so yeah, that we, everyone is challenging all these assumptions from, from first principles, which is fascinating.[00:13:04] Stackable LoRA[00:13:04] swyx: I, I did, I did wanted to, to like try to get a little bit more technical in terms of like the, the, the, the specific points race. Cuz this doc, this doc was just amazing. Can we talk about LoRA. I, I, I'll open up to Simon again if he's back.[00:13:16] Simon Willison: I'd rather someone else take on. LoRA, I've, I, I know as much as I've read in that paper, but not much more than that.[00:13:21] swyx: So I thought it was this kind of like an optimization technique. So LoRA stands for lower rank adaptation. But this is the first mention of LoRA as a form of stackable improvements. Where he I forget what, let, just, let me just kind of Google this. But obviously anyone's more knowledgeable please.[00:13:39] So come on in.[00:13:40] Alessio Fanelli: I, all of Lauren is through GTS Man, about 20 minutes on GT four, trying to figure out word. It was I study computer science, but this is not this is not my area of expertise. What I got from it is that basically instead of having to retrain the whole model you can just pick one of the ranks and you take.[00:13:58] One of like the, the weight matrix tests and like make two smaller matrixes from it and then just two to be retrained and training the whole model. So[00:14:08] swyx: it save a lot of Yeah. You freeze part of the thing and then you just train the smaller part like that. Exactly. That seems to be a area of a lot of fruitful research.[00:14:15] Yeah. I think Mini GT four recently did something similar as well. And then there's, there's, there's a, there's a Spark Model people out today that also did the same thing.[00:14:23] Simon Willison: So I've seen a lot of LoRA stable, the stable diffusion community has been using LoRA a lot. So they, in that case, they had a, I, the thing I've seen is people releasing LoRA's that are like you, you train a concept like a, a a particular person's face or something you release.[00:14:38] And the, the LoRA version of this end up being megabytes of data, like, which is, it's. You know, it's small enough that you can just trade those around and you can effectively load multiple of those into the model. But what I haven't realized is that you can use the same trick on, on language models. That was one of the big new things for me in reading the the leaks Google paper today.[00:14:56] Alessio Fanelli: Yeah, and I think the point to make around on the infrastructure, so what tragedy has told me is that when you're figuring out what rank you actually wanna do this fine tuning at you can have either go too low and like the model doesn't actually learn it. Or you can go too high and the model overfit those learnings.[00:15:14] So if you have a base model that everybody agrees on, then all the subsequent like LoRA work is done around the same rank, which gives you an advantage. And the point they made in the, that, since Lama has been the base for a lot of this LoRA work like they own. The, the mind share of the community.[00:15:32] So everything that they're building is compatible with their architecture. But if Google Opensources their own model the rank that they chose For LoRA on Lama might not work on the Google model. So all of the existing work is not portable. So[00:15:46] Simon Willison: the impression I got is that one of the challenges with LoRA is that you train all these LoRAs on top of your model, but then if you retrain that base model as LoRA's becoming invalid, right?[00:15:55] They're essentially, they're, they're, they're built for an exact model version. So this means that being the big company with all of the GPUs that can afford to retrain a model every three months. That's suddenly not nearly as valuable as it used to be because now maybe there's an open source model that's five years old at this point and has like multiple, multiple stacks of LoRA's trained all over the world on top of it, which can outperform your brand new model just because there's been so much more iteration on that base.[00:16:20] swyx: I, I think it's, I think it's fascinating. It's I think Jim Fan from Envidia was recently making this argument for transformers. Like even if we do come up with a better. Architecture, then transformers, they're the sheer hundreds and millions of dollars that have been invested on top of transformers.[00:16:34] Make it actually there is some switching costs and it's not exactly obvious that better architecture. Equals equals we should all switch immediately tomorrow. It's, it's, it's[00:16:44] Simon Willison: kinda like the, the difficulty of launching a new programming language today Yes. Is that pipeline and JavaScript have a million packages.[00:16:51] So no matter how good your new language is, if it can't tap into those existing package libraries, it's, it's not gonna be useful for, which is why Moji is so clever, because they did build on top of Pips. They get all of that existing infrastructure, all of that existing code working already.[00:17:05] swyx: I mean, what, what thought you, since you co-create JAO and all that do, do we wanna take a diversion into mojo?[00:17:10] No, no. I[00:17:11] Travis Fischer: would, I, I'd be happy to, to, to jump in, and get Simon's take on, on Mojo. 1, 1, 1 small, small point on LoRA is I, I, I just think. If you think about at a high level, what the, the major down downsides are of these, these large language models. It's the fact that they well they're, they're, they're difficult to, to train, right?[00:17:32] They, they tend to hallucinate and they are, have, have a static, like, like they were trained at a certain date, right? And with, with LoRA, I think it makes it a lot more amenable to Training new, new updates on top of that, that like base model on the fly where you can incorporate new, new data and in a way that is, is, is an interesting and potentially more optimal alternative than Doing the kind of in context generation cuz, cuz most of like who at perplexity AI or, or any of these, these approaches currently, it's like all based off of doing real-time searches and then injecting as much into the, the, the local context window as possible so that you, you try to ground your, your, your, your language model.[00:18:16] Both in terms of the, the information it has access to that, that, that helps to reduce hallucinations. It can't reduce it, but helps to reduce it and then also gives it access to up-to-date information that wasn't around for that, that massive like, like pre-training step. And I think LoRA in, in, in mine really makes it more, more amenable to having.[00:18:36] Having constantly shifting lightweight pre-training on top of it that scales better than than normal. Pre I'm sorry. Fine tune, fine tuning. Yeah, that, that was just kinda my one takeaway[00:18:45] Simon Willison: there. I mean, for me, I've never been, I want to run models on my own hard, I don't actually care about their factual content.[00:18:52] Like I don't need a model that's been, that's trained on the most upstate things. What I need is a model that can do the bing and bar trick, right? That can tell when it needs to run a search. And then go and run a search to get extra information and, and bring that context in. And similarly, I wanted to be able to operate tools where it can access my email or look at my notes or all of those kinds of things.[00:19:11] And I don't think you need a very powerful model for that. Like that's one of the things where I feel like, yeah, vicuna running on my, on my laptop is probably powerful enough to drive a sort of personal research assistant, which can look things up for me and it can summarize things for my notes and it can do all of that and I don't care.[00:19:26] But it doesn't know about the Ukraine war because the Ukraine war training cutoff, that doesn't matter. If it's got those additional capabilities, which are quite easy to build the reason everyone's going crazy building agents and tools right now is that it's a few lines of Python code, and a sort of couple of paragraphs to get it to.[00:19:44] The Need for Special Purpose Optimized Models[00:19:44] Simon Willison: Well, let's, let's,[00:19:45] Travis Fischer: let's maybe dig in on that a little bit. And this, this also is, is very related to mojo. Cuz I, I do think there are use cases and domains where having the, the hyper optimized, like a version of these models running on device is, is very relevant where you can't necessarily make API calls out on the fly.[00:20:03] and Aug do context, augmented generation. And I was, I was talking with, with a a researcher. At Lockheed Martin yesterday, literally about like, like the, the version of this that's running of, of language models running on, on fighter jets. Right? And you, you talk about like the, the, the amount of engineering, precision and optimization that has to go into, to those type of models.[00:20:25] And the fact that, that you spend so much money, like, like training a super distilled ver version where milliseconds matter it's a life or death situation there. You know, and you couldn't even, even remotely ha ha have a use case there where you could like call out and, and have, have API calls or something.[00:20:40] So I, I do think there's like keeping in mind the, the use cases where, where. There, there'll be use cases that I'm more excited about at, at the application level where, where, yeah, I want to to just have it be super flexible and be able to call out to APIs and have this agentic type type thing.[00:20:56] And then there's also industries and, and use cases where, where you really need everything baked into the model.[00:21:01] swyx: Yep. Agreed. My, my favorite piece take on this is I think DPC four as a reasoning engine, which I think came from the from Nathan at every two. Which I think, yeah, I see the hundred score over there.[00:21:12] Modular - Mojo from Chris Lattner[00:21:12] swyx: Simon, do you do you have a, a few seconds on[00:21:14] Simon Willison: mojo. Sure. So Mojo is a brand new program language you just announced a few days ago. It's not actually available yet. I think there's an online demo, but to zooming it becomes an open source language we can use. It's got really some very interesting characteristics.[00:21:29] It's a super set of Python, so anything written in Python, Python will just work, but it adds additional features on top that let you basically do very highly optimized code with written. In Python syntax, it compiles down the the main thing that's exciting about it is the pedigree that it comes from.[00:21:47] It's a team led by Chris Latner, built L L V M and Clang, and then he designed Swift at Apple. So he's got like three, three for three on, on extraordinarily impactful high performance computing products. And he put together this team and they've basically, they're trying to go after the problem of how do you build.[00:22:06] A language which you can do really high performance optimized work in, but where you don't have to do everything again from scratch. And that's where building on top of Python is so clever. So I wasn't like, if this thing came along, I, I didn't really pay attention to it until j Jeremy Howard, who built Fast ai put up a very detailed blog post about why he was excited about Mojo, which included a, there's a video demo in there, which everyone should watch because in that video he takes Matrix multiplication implemented in Python.[00:22:34] And then he uses the mojo extras to 2000 x. The performance of that matrix multiplication, like he adds a few static types functions sort of struck instead of the class. And he gets 2000 times the performance out of it, which is phenomenal. Like absolutely extraordinary. So yeah, that, that got me really excited.[00:22:52] Like the idea that we can still use Python and all of this stuff we've got in Python, but we can. Just very slightly tweak some things and get literally like thousands times upwards performance out of the things that matter. That's really exciting.[00:23:07] swyx: Yeah, I, I, I'm curious, like, how come this wasn't thought of before?[00:23:11] It's not like the, the, the concept of a language super set hasn't hasn't, has, has isn't, is completely new. But all, as far as I know, all the previous Python interpreter approaches, like the alternate runtime approaches are like they, they, they're more, they're more sort of, Fit conforming to standard Python, but never really tried this additional approach of augmenting the language.[00:23:33] The Promise of Language Supersets[00:23:33] swyx: I, I'm wondering if you have many insights there on, like, why, like why is this a, a, a breakthrough?[00:23:38] Simon Willison: Yeah, that's a really interesting question. So, Jeremy Howard's piece talks about this thing called M L I R, which I hadn't heard of before, but this was another Chris Latner project. You know, he built L L VM as a low level virtual machine.[00:23:53] That you could build compilers on top of. And then M L I R was this one that he initially kicked off at Google, and I think it's part of TensorFlow and things like that. But it was very much optimized for multiple cores and GPU access and all of that kind of thing. And so my reading of Jeremy Howard's article is that they've basically built Mojo on top of M L I R.[00:24:13] So they had a huge, huge like a starting point where they'd, they, they knew this technology better than anyone else. And because they had this very, very robust high performance basis that they could build things on. I think maybe they're just the first people to try and build a high, try and combine a high level language with M L A R, with some extra things.[00:24:34] So it feels like they're basically taking a whole bunch of ideas people have been sort of experimenting with over the last decade and bundled them all together with exactly the right team, the right level of expertise. And it looks like they've got the thing to work. But yeah, I mean, I've, I've, I'm. Very intrigued to see, especially once this is actually available and we can start using it.[00:24:52] It, Jeremy Howard is someone I respect very deeply and he's, he's hyping this thing like crazy, right? His headline, his, and he's not the kind of person who hypes things if they're not worth hyping. He said Mojo may be the biggest programming language advanced in decades. And from anyone else, I'd kind of ignore that headline.[00:25:09] But from him it really means something.[00:25:11] swyx: Yes, because he doesn't hype things up randomly. Yeah, and, and, and he's a noted skeptic of Julia which is, which is also another data science hot topic. But from the TypeScript and web, web development worlds there has been a dialect of TypeScript that was specifically optimized to compile, to web assembly which I thought was like promising and then, and, and eventually never really took off.[00:25:33] But I, I like this approach because I think more. Frameworks should, should essentially be languages and recognize that they're language superset and maybe working compilers that that work on them. And then that is the, by the way, that's the direction that React is going right now. So fun times[00:25:50] Simon Willison: type scripts An interesting comparison actually, cuz type script is effectively a superset of Java script, right?[00:25:54] swyx: It's, but there's no, it's purely[00:25:57] Simon Willison: types, right? Gotcha. Right. So, so I guess mojo is the soup set python, but the emphasis is absolutely on tapping into the performance stuff. Right.[00:26:05] swyx: Well, the just things people actually care about.[00:26:08] Travis Fischer: Yeah. The, the one thing I've found is, is very similar to the early days of type script.[00:26:12] There was the, the, the, the most important thing was that it's incrementally adoptable. You know, cuz people had a script code basis and, and they wanted to incrementally like add. The, the, the main value prop for TypeScript was reliability and the, the, the, the static typing. And with Mojo, Lucia being basically anyone who's a target a large enterprise user of, of Mojo or even researchers, like they're all going to be coming from a, a hardcore.[00:26:36] Background in, in Python and, and have large existing libraries. And the the question will be for what use cases will mojo be like a, a, a really good fit for that incremental adoption where you can still tap into your, your, your massive, like python exi existing infrastructure workflows, data tooling, et cetera.[00:26:55] And, and what does, what does that path to adoption look like?[00:26:59] swyx: Yeah, we, we, we don't know cuz it's a wait listed language which people were complaining about. They, they, the, the mojo creators were like saying something about they had to scale up their servers. And I'm like, what language requires essential server?[00:27:10] So it's a little bit suss, a little bit, like there's a, there's a cloud product already in place and they're waiting for it. But we'll see. We'll see. I mean, emojis should be promising in it. I, I actually want more. Programming language innovation this way. You know, I was complaining years ago that programming language innovation is all about stronger types, all fun, all about like more functional, more strong types everywhere.[00:27:29] And, and this is, the first one is actually much more practical which I, which I really enjoy. This is why I wrote about self provisioning run types.[00:27:36] Simon Willison: And[00:27:37] Alessio Fanelli: I mean, this is kind of related to the post, right? Like if you stop all of a sudden we're like, the models are all the same and we can improve them.[00:27:45] Like, where can we get the improvements? You know, it's like, Better run times, better languages, better tooling, better data collection. Yeah. So if I were a founder today, I wouldn't worry as much about the model, maybe, but I would say, okay, what can I build into my product and like, or what can I do at the engineering level that maybe it's not model optimization because everybody's working on it, but like you said, it's like, why haven't people thought of this before?[00:28:09] It's like, it's, it's definitely super hard, but I'm sure that if you're like Google or you're like open AI or you're like, Databricks, we got smart enough people that can think about these problems, so hopefully we see more of this.[00:28:21] swyx: You need, Alan? Okay. I promise to keep this relatively tight. I know Simon on a beautiful day.[00:28:27] It is a very nice day in California. I wanted to go through a few more points that you have pulled out Simon and, and just give you the opportunity to, to rant and riff and, and what have you. I, I, are there any other points from going back to the sort of Google OpenAI mode documents that, that you felt like we, we should dive in on?[00:28:44] Google AI Strategy[00:28:44] Simon Willison: I mean, the really interesting stuff there is the strategy component, right? The this idea that that Facebook accidentally stumbled into leading this because they put out this model that everyone else is innovating on top of. And there's a very open question for me as to would Facebook relic Lama to allow for commercial usage?[00:29:03] swyx: Is there some rumor? Is that, is that today?[00:29:06] Simon Willison: Is there a rumor about that?[00:29:07] swyx: That would be interesting? Yeah, I saw, I saw something about Zuck saying that he would release the, the Lama weights officially.[00:29:13] Simon Willison: Oh my goodness. No, that I missed. That is, that's huge.[00:29:17] swyx: Let me confirm the tweet. Let me find the tweet and then, yeah.[00:29:19] Okay.[00:29:20] Simon Willison: Because actually I met somebody from Facebook machine learning research a couple of weeks ago, and I, I pressed 'em on this and they said, basically they don't think it'll ever happen because if it happens, and then somebody does horrible fascist stuff with this model, all of the headlines will be Meg releases a monster into the world.[00:29:36] So, so hi. His, the, the, the, a couple of weeks ago, his feeling was that it's just too risky for them to, to allow it to be used like that. But a couple of weeks is, is, is a couple of months in AI world. So yeah, it wouldn't be, it feels to me like strategically Facebook should be jumping right on this because this puts them at the very.[00:29:54] The very lead of, of open source innovation around this stuff.[00:29:58] Zuck Releasing LLaMA[00:29:58] swyx: So I've pinned the tweet talking about Zuck and Zuck saying that meta will open up Lama. It's from the founder of Obsidian, which gives it a slight bit more credibility, but it is the only. Tweet that I can find about it. So completely unsourced,[00:30:13] we shall see. I, I, I mean I have friends within meta, I should just go ask them. But yeah, I, I mean one interesting angle on, on the memo actually is is that and, and they were linking to this in, in, in a doc, which is apparently like. Facebook got a bunch of people to do because they, they never released it for commercial use, but a lot of people went ahead anyway and, and optimized and, and built extensions and stuff.[00:30:34] They, they got a bunch of free work out of opensource, which is an interesting strategy.[00:30:39] There's okay. I don't know if I.[00:30:42] Google Origin Confirmed[00:30:42] Simon Willison: I've got exciting piece of news. I've just heard from somebody with contacts at Google that they've heard people in Google confirm the leak. That that document wasn't even legit Google document, which I don't find surprising at all, but I'm now up to 10, outta 10 on, on whether that's, that's, that's real.[00:30:57] Google's existential threat[00:30:57] swyx: Excellent. Excellent. Yeah, it is fascinating. Yeah, I mean the, the strategy is, is, is really interesting. I think Google has been. Definitely sleeping on monetizing. You know, I, I, I heard someone call when Google Brain and Devrel I merged that they would, it was like goodbye to the Xerox Park of our era and it definitely feels like Google X and Google Brain would definitely Xerox parks of our, of our era, and I guess we all benefit from that.[00:31:21] Simon Willison: So, one thing I'll say about the, the Google side of things, like the there was a question earlier, why are Google so worried about this stuff? And I think it's, it's just all about the money. You know, the, the, the engine of money at Google is Google searching Google search ads, and who uses Chachi PT on a daily basis, like me, will have noticed that their usage of Google has dropped like a stone.[00:31:41] Because there are many, many questions that, that chat, e p t, which shows you no ads at all. Is, is, is a better source of information for than Google now. And so, yeah, I'm not, it doesn't surprise me that Google would see this as an existential threat because whether or not they can be Bard, it's actually, it's not great, but it, it exists, but it hasn't it yet either.[00:32:00] And if I've got a Chatbook chatbot that's not showing me ads and chatbot that is showing me ads, I'm gonna pick the one that's not showing[00:32:06] swyx: me ads. Yeah. Yeah. I, I agree. I did see a prototype of Bing with ads. Bing chat with ads. I haven't[00:32:13] Simon Willison: seen the prototype yet. No.[00:32:15] swyx: Yeah, yeah. Anyway, I I, it, it will come obviously, and then we will choose, we'll, we'll go out of our ways to avoid ads just like we always do.[00:32:22] We'll need ad blockers and chat.[00:32:23] Excellent.[00:32:24] Non-Fiction AI Safety ("y-risk")[00:32:24] Simon Willison: So I feel like on the safety side, the, the safety side, there are basically two areas of safety that I, I, I sort of split it into. There's the science fiction scenarios, the AI breaking out and killing all humans and creating viruses and all of that kind of thing. The sort of the terminated stuff. And then there's the the.[00:32:40] People doing bad things with ai and that's latter one is the one that I think is much more interesting and that cuz you could u like things like romance scams, right? Romance scams already take billions of dollars from, from vulner people every year. Those are very easy to automate using existing tools.[00:32:56] I'm pretty sure for QNA 13 b running on my laptop could spin up a pretty decent romance scam if I was evil and wanted to use it for them. So that's the kind of thing where, I get really nervous about it, like the fact that these models are out there and bad people can use these bad, do bad things.[00:33:13] Most importantly at scale, like romance scamming, you don't need a language model to pull off one romance scam, but if you wanna pull off a thousand at once, the language model might be the, the thing that that helps you scale to that point. And yeah, in terms of the science fiction stuff and also like a model on my laptop that can.[00:33:28] Guess what comes next in a sentence. I'm not worried that that's going to break out of my laptop and destroy the world. There. There's, I'm get slightly nervous about the huge number of people who are trying to build agis on top of this models, the baby AGI stuff and so forth, but I don't think they're gonna get anywhere.[00:33:43] I feel like if you actually wanted a model that was, was a threat to human, a language model would be a tiny corner of what that thing. Was actually built on top of, you'd need goal setting and all sorts of other bits and pieces. So yeah, for the moment, the science fiction stuff doesn't really interest me, although it is a little bit alarming seeing more and more of the very senior figures in this industry sort of tip the hat, say we're getting a little bit nervous about this stuff now.[00:34:08] Yeah.[00:34:09] swyx: So that would be Jeff Iton and and I, I saw this me this morning that Jan Lacoon was like happily saying, this is fine. Being the third cheer award winner.[00:34:20] Simon Willison: But you'll see a lot of the AI safe, the people who've been talking about AI safety for the longest are getting really angry about science fiction scenarios cuz they're like, no, the, the thing that we need to be talking about is the harm that you can cause with these models right now today, which is actually happening and the science fiction stuff kind of ends up distracting from that.[00:34:36] swyx: I love it. You, you. Okay. So, so Uher, I don't know how to pronounce his name. Elier has a list of ways that AI will kill us post, and I think, Simon, you could write a list of ways that AI will harm us, but not kill us, right? Like the, the, the non-science fiction actual harm ways, I think, right? I haven't seen a, a actual list of like, hey, romance scams spam.[00:34:57] I, I don't, I don't know what else, but. That could be very interesting as a Hmm. Okay. Practical. Practical like, here are the situations we need to guard against because they are more real today than that we need to. Think about Warren, about obviously you've been a big advocate of prompt injection awareness even though you can't really solve them, and I, I worked through a scenario with you, but Yeah,[00:35:17] Prompt Injection[00:35:17] Simon Willison: yeah.[00:35:17] Prompt injection is a whole other side of this, which is, I mean, that if you want a risk from ai, the risk right now is everyone who's building puts a building systems that attackers can trivially subvert into stealing all of their private data, unlocking their house, all of that kind of thing. So that's another very real risk that we have today.[00:35:35] swyx: I think in all our personal bios we should edit in prompt injections already, like in on my website, I wanna edit in a personal prompt injections so that if I get scraped, like I all know if someone's like reading from a script, right? That that is generated by any iBot. I've[00:35:49] Simon Willison: seen people do that on LinkedIn already and they get, they get recruiter emails saying, Hey, I didn't read your bio properly and I'm just an AI script, but would you like a job?[00:35:57] Yeah. It's fascinating.[00:36:00] Google vs OpenAI[00:36:00] swyx: Okay. Alright, so topic. I, I, I think, I think this this, this mote is is a peak under the curtain of the, the internal panic within Google. I think it is very val, very validated. I'm not so sure they should care so much about small models or, or like on device models.[00:36:17] But the other stuff is interesting. There is a comment at the end that you had by about as for opening open is themselves, open air, doesn't matter. So this is a Google document talking about Google's position in the market and what Google should be doing. But they had a comment here about open eye.[00:36:31] They also say open eye had no mode, which is a interesting and brave comment given that open eye is the leader in, in a lot of these[00:36:38] Simon Willison: innovations. Well, one thing I will say is that I think we might have identified who within Google wrote this document. Now there's a version of it floating around with a name.[00:36:48] And I look them up on LinkedIn. They're heavily involved in the AI corner of Google. So my guess is that at Google done this one, I've worked for companies. I'll put out a memo, I'll write up a Google doc and I'll email, email it around, and it's nowhere near the official position of the company or of the executive team.[00:37:04] It's somebody's opinion. And so I think it's more likely that this particular document is somebody who works for Google and has an opinion and distributed it internally and then it, and then it got leaked. I dunno if it's necessarily. Represents Google's sort of institutional thinking about this? I think it probably should.[00:37:19] Again, this is such a well-written document. It's so well argued that if I was an executive at Google and I read that, I would, I would be thinking pretty hard about it. But yeah, I don't think we should see it as, as sort of the official secret internal position of the company. Yeah. First[00:37:34] swyx: of all, I might promote that person.[00:37:35] Cuz he's clearly more,[00:37:36] Simon Willison: oh, definitely. He's, he's, he's really, this is a, it's, I, I would hire this person about the strength of that document.[00:37:42] swyx: But second of all, this is more about open eye. Like I'm not interested in Google's official statements about open, but I was interested like his assertion, open eye.[00:37:50] Doesn't have a mote. That's a bold statement. I don't know. It's got the best people.[00:37:55] Travis Fischer: Well, I, I would, I would say two things here. One, it's really interesting just at a meta, meta point that, that they even approached it this way of having this public leak. It, it, it kind of, Talks a little bit to the fact that they, they, they felt that that doing do internally, like wasn't going to get anywhere or, or maybe this speaks to, to some of the like, middle management type stuff or, or within Google.[00:38:18] And then to the, the, the, the point about like opening and not having a moat. I think for, for large language models, it, it, it will be over, over time kind of a race to the bottom just because the switching costs are, are, are so low compared with traditional cloud and sas. And yeah, there will be differences in, in, in quality, but, but like over time, if you, you look at the limit of these things like the, I I think Sam Altman has been quoted a few times saying that the, the, the price of marginal price of intelligence will go to zero.[00:38:47] Time and the marginal price of energy powering that intelligence will, will also hit over time. And in that world, if you're, you're providing large language models, they become commoditized. Like, yeah. What, what is, what is your mode at that point? I don't know. I think they're e extremely well positioned as a team and as a company for leading this space.[00:39:03] I'm not that, that worried about that, but it is something from a strategic point of view to keep in mind about large language models becoming a commodity. So[00:39:11] Simon Willison: it's quite short, so I think it's worth just reading the, in fact, that entire section, it says epilogue. What about open ai? All of this talk of open source can feel unfair given open AI's current closed policy.[00:39:21] Why do we have to share if they won't? That's talking about Google sharing, but the fact of the matter is we are already sharing everything with them. In the form of the steady flow of poached senior researchers until we spent that tide. Secrecy is a moot point. I love that. That's so salty. And, and in the end, open eye doesn't matter.[00:39:38] They are making the same mistakes that we are in their posture relative to open source. And their ability to maintain an edge is necessarily in question. Open source alternatives. Canned will eventually eclipse them. Unless they change their stance in this respect, at least we can make the first move. So the argument this, this paper is making is that Google should go, go like meta and, and just lean right into open sourcing it and engaging with the wider open source community much more deeply, which OpenAI have very much signaled they are not willing to do.[00:40:06] But yeah, it's it's, it's read the whole thing. The whole thing is full of little snippets like that. It's just super fun. Yes,[00:40:12] swyx: yes. Read the whole thing. I, I, I also appreciate that the timeline, because it set a lot of really great context for people who are out of the loop. So Yeah.[00:40:20] Alessio Fanelli: Yeah. And the final conspiracy theory is that right before Sundar and Satya and Sam went to the White House this morning, so.[00:40:29] swyx: Yeah. Did it happen? I haven't caught up the White House statements.[00:40:34] Alessio Fanelli: No. That I, I just saw, I just saw the photos of them going into the, the White House. I've been, I haven't seen any post-meeting updates.[00:40:41] swyx: I think it's a big win for philanthropic to be at that table.[00:40:44] Alessio Fanelli: Oh yeah, for sure. And co here it's not there.[00:40:46] I was like, hmm. Interesting. Well, anyway,[00:40:50] swyx: yeah. They need, they need some help. Okay. Well, I, I promise to keep this relatively tight. Spaces do tend to have a, have a tendency of dragging on. But before we go, anything that you all want to plug, anything that you're working on currently maybe go around Simon are you still working on dataset?[00:41:04] Personal plugs: Simon and Travis[00:41:04] Simon Willison: I am, I am, I'm having a bit of a, so datasets my open source project that I've been working on. It's about helping people analyze and publish data. I'm having an existential crisis of it at the moment because I've got access to the chat g p T code, interpreter mode, and you can upload the sequel light database to that and it will do all of the things that I, on my roadmap for the next 12 months.[00:41:24] Oh my God. So that's frustrating. So I'm basically, I'm leaning data. My interest in data and AI are, are rapidly crossing over a lot harder about the AI features that I need to build on top of dataset. Make sure it stays relevant in a chat. G p t can do most of the stuff that it does already. But yeah the thing, I'll plug my blog simon willis.net.[00:41:43] I'm now updating it daily with stuff because AI move moved so quickly and I have a sub newsletter, which is effectively my blog, but in email form sent out a couple of times a week, which Please subscribe to that or RSS feed on my blog or, or whatever because I'm, I'm trying to keep track of all sorts of things and I'm publishing a lot at the moment.[00:42:02] swyx: Yes. You, you are, and we love you very much for it because you, you are a very good reporter and technical deep diver into things, into all the things. Thank you, Simon. Travis are you ready to announce the, I guess you've announced it some somewhat. Yeah. Yeah.[00:42:14] Travis Fischer: So I'm I, I just founded a company.[00:42:16] I'm working on a framework for building reliable agents that aren't toys and focused on more constrained use cases. And you know, I I, I look at kind of agi. And these, these audigy type type projects as like jumping all the way to str to, to self-driving. And, and we, we, we kind of wanna, wanna start with some more enter and really focus on, on reliable primitives to, to start that.[00:42:38] And that'll be an open source type script project. I'll be releasing the first version of that soon. And that's, that's it. Follow me you know, on here for, for this type of stuff, I, I, I, everything, AI[00:42:48] swyx: and, and spa, his chat PT bot,[00:42:50] Travis Fischer: while you still can. Oh yeah, the chat VT Twitter bot is about 125,000 followers now.[00:42:55] It's still running. I, I'm not sure if it's your credit. Yeah. Can you say how much you spent actually, No, no. Well, I think probably totally like, like a thousand bucks or something, but I, it's, it's sponsored by OpenAI, so I haven't, I haven't actually spent any real money.[00:43:08] swyx: What? That's[00:43:09] awesome.[00:43:10] Travis Fischer: Yeah. Yeah.[00:43:11] Well, once, once I changed, originally the logo was the Chachi VUI logo and it was the green one, and then they, they hit me up and asked me to change it. So it's now it's a purple logo. And they're, they're, they're cool with that. Yeah.[00:43:21] swyx: Yeah. Sending take down notices to people with G B T stuff apparently now.[00:43:26] So it's, yeah, it's a little bit of a gray area. I wanna write more on, on mos. I've been actually collecting and meaning to write a piece of mos and today I saw the memo, I was like, oh, okay. Like I guess today's the day we talk about mos. So thank you all. Thanks. Thanks, Simon. Thanks Travis for, for jumping on and thanks to all the audience for engaging on this with us.[00:43:42] We'll continue to engage on Twitter, but thanks to everyone. Cool. Thanks everyone. Bye. Alright, thanks everyone. Bye. Get full access to Latent.Space at www.latent.space/subscribe

"Woman, Life, Freedom" in Iran -- and what it means for the rest of the world | Golshifteh Farahani

From TED Talks Daily

In this poetic and moving reflection, actor, musician and activist Golshifteh Farahani honors those who have fought for "Woman, Life, Freedom" following Mahsa Amini's death at the hands of Iran's religious morality police. Calling upon our shared humanity, she urges everyone to take a stand against violence inflicted on innocent people around the world.Learn more about our flagship conference happening this April at attend.ted.com/podcast Hosted on Acast. See acast.com/privacy for more information.

Bluesky Has the Juice + A.I. Jobs Apocalypse + Hard Questions

From Hard Fork

The Twitter look-alike Bluesky, started by the former Twitter chief executive Jack Dorsey, is doing the impossible: making social media fun again. Then, A.I. is coming for jobs but not in the way you think. Plus: Kevin and Casey moonlight as advice columnists in a new Hard Fork segment called Hard Questions.

How Generative AI Changes Productivity

From HBR IdeaCast

How Generative AI Changes Everything is a special series from HBR IdeaCast. Each week, HBR editor in chief Adi Ignatius and HBR editor Amy Bernstein host conversations with experts and business leaders about the impact of generative AI on productivity, creativity and innovation, organizational culture, and strategy. The episodes publish in the IdeaCast feed each Thursday in May, after the regular Tuesday episode. Generative artificial intelligence is grabbing headlines with the widespread public excitement over tools like ChatGPT. And early academic research shows significant productivity gains in written communications, customer service, market research, computer coding, and professional analysis such as legal work. Meanwhile, the technology is rapidly evolving and getting better the more people use it. As a leader, it’s hard to stay ahead of the developments. In this episode, How Generative AI Changes Productivity, Amy Bernstein speaks with Karim Lakhani, a professor at Harvard Business School and a coauthor of the book Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World. They discuss initial productivity gains for individuals from the technology, how that will scale across a workforce, and the pressing challenges facing organizational leaders.

How poetry unlocked my superpowers | Keenan Scott II

From TED Talks Daily

Keenan Scott Il's passion for words, stories and superheroes fueled his journey to becoming a celebrated playwright, producer, director and actor. Showing how language can illuminate the superhero in all of us, Scott performs three spoken word pieces that seamlessly weave together literary devices like simile, assonance and slant rhyme, sharing the talent he's cultivated despite the obstacles (read: kryptonite).Learn more about our flagship conference happening this April at attend.ted.com/podcast Hosted on Acast. See acast.com/privacy for more information.

AI Santa and Four Other Simple Business Ideas (+ Vice Goes Bankrupt!)

From My First Million

Episode 451: Shaan Puri (@ShaanVP) and Sam Parr (@TheSamParr) talk about business ideas that solve problems, deep fake Santa and the rise and fall of Vice media. Want to see more MFM? Subscribe to the MFM YouTube channel here. Check Out Sam's Stuff: * Hampton * Ideation Bootcamp * Copy That Check Out Shaan's Stuff: * Power Writing Course * Daily Newsletter ----- Links: * Vice * OMG Facts * Nonlinear * TrueMed * Play Street Museum * 260 Sample Sale * Kingsford Charcoal * Hostshare * Kindred * MoneySuperMarket * Replit * TrueMed * Do you love MFM and want to see Sam and Shaan's smiling faces? Subscribe to our Youtube channel. ------ Show Notes: (00:55) - Play Street Museum (06:32) - 260 Sample Sale (13:05) - Host Share (21:15) - AI Santa (25:18) - Vice media (43:45) - OMG Facts and Emerson Spartz ------ Past guests on My First Million include Rob Dyrdek, Hasan Minhaj, Balaji Srinivasan, Jake Paul, Dr. Andrew Huberman, Gary Vee, Lance Armstrong, Sophia Amoruso, Ariel Helwani, Ramit Sethi, Stanley Druckenmiller, Peter Diamandis, Dharmesh Shah, Brian Halligan, Marc Lore, Jason Calacanis, Andrew Wilkinson, Julian Shapiro, Kat Cole, Codie Sanchez, Nader Al-Naji, Steph Smith, Trung Phan, Nick Huber, Anthony Pompliano, Ben Askren, Ramon Van Meer, Brianne Kimmel, Andrew Gazdecki, Scott Belsky, Moiz Ali, Dan Held, Elaine Zelby, Michael Saylor, Ryan Begelman, Jack Butcher, Reed Duchscher, Tai Lopez, Harley Finkelstein, Alexa von Tobel, Noah Kagan, Nick Bare, Greg Isenberg, James Altucher, Randy Hetrick and more. ----- Additional episodes you might enjoy: • #224 Rob Dyrdek - How Tracking Every Second of His Life Took Rob Drydek from 0 to $405M in Exits • #209 Gary Vaynerchuk - Why NFTS Are the Future • #178 Balaji Srinivasan - Balaji on How to Fix the Media, Cloud Cities & Crypto * #169 - How One Man Started 5, Billion Dollar Companies, Dan Gilbert's Empire, & Talking With Warren Buffett • ​​​​#218 - Why You Should Take a Think Week Like Bill Gates • Dave Portnoy vs The World, Extreme Body Monitoring, The Future of Apparel Retail, "How Much is Anthony Pompliano Worth?", and More • How Mr Beast Got 100M Views in Less Than 4 Days, The $25M Chrome Extension, and More

Personalizing AI Models with Kelvin Guu, Senior Staff Research Scientist, Google Brain

How do you personalize AI models? A popular school of thought in AI is to just dump all the data you need into pre-training or fine tuning. But that may be less efficient and less controllable than alternatives — using AI models as a reasoning engine against external data sources. Kelvin Guu, Senior Staff Research Scientist at Google, joins Sarah and Elad this week to talk about retrieval, memory, training data attribution and model orchestration. At Google, he led some of the first efforts to leverage pre-trained LMs and neural retrievers, with >30 launches across multiple products. He has done some of the earliest work on retrieval-augmented language models (REALM) and training LLMs to follow instructions (FLAN). No Priors is now on YouTube! Subscribe to the channel on YouTube and like this episode. Show Links: Kelvin Guu Website Google Scholar FLAN: Finetuned Language Models Are Zero-Shot Learners Simfluence: Modeling the Influence of Individual Training Examples by Simulating Training Runs ROME: Locating and Editing Factual Associations in GPT Branch-Train-Merge: Scaling Expert Language Models with Unsupervised Domain Discovery Large Language Models Struggle to Learn Long-Tail Knowledge  Sign up for new podcasts every week. Email feedback to [email protected] Follow us on Twitter: @NoPriorsPod | @Saranormous | @EladGil | @Kelvin_Guu Show Notes: [1:44] - Kelvin’s background in math, statistics and natural language processing at Stanford [3:24] - The questions driving the REALM Paper [7:08] - Frameworks around retrieval augmentation & expert models [10:16] - Why is modularity important [11:36] - FLAN Paper and instruction following [13:28] - Updating model weights in real time and other continuous learning methods [15:08] - Simfluence Paper & explainability with large language models [18:11] - ROME paper, “Model Surgery” exciting research areas [19:51] - Personal opinions and thoughts on AI agents & research [24:59] - How the human brain compares to AGI regarding memory and emotions [28:08] - How models become more contextually available [30:45] - Accessibility of models [33:47] - Advice to future researchers

Page 300 of 741 (14819 episodes from United States)

🇺🇸 About United States Episodes

Explore the diverse voices and perspectives from podcast creators in United States. Each episode offers unique insights into the culture, language, and stories from this region.